
AllFusion®

 ERwin®

 Data Modeler – “Readers Choice Winner”

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

RETAILERS PLEASE DISPLAY
UNTIL JANUARY 31, 2005

NOVEMBER 2004 VOLUME:9 ISSUE:11

Using the management and monitoring APIs to build application manageability

BUILDING
MANAGEABILITY

PLUS...
Creating a
Pet Store Application
Understanding
Portals and Portlets

Java on
Wall Street

EJB 3.0
Preview

Distributed Notification
with Java RMI

J2SE 5.0
Ready for Business

PAGE 60-61
February 15-17, 2005

Hynes Convention Center
Boston, MA

• Join Over 3,000 Developers
• App Server Shoot-Out!
 • FREE J2EE Tutorial
 • JDJ Partner Pavilion
 • Seminars and Case Studies

No. 1 i-Technology Magazine in the World

$1,000,000
Software Giveaway

Voted “Best Database Tool or Driver” by readers of
Java Developer’s Journal, in your hands FREE – try it today!

�����������������

�����������������
��������������������������������

����������������
����������������������

������������
���������������������

���
��

��

www.SYS-CON.com/JDJ November 2004 3

hen I asked in a previous
editorial who the Top Twenty
Software People in the World
were, I knew there would be a

widely divergent response from readers.
As promised, here’s a preliminary update
on the identity of some of your nominees.
 The exercise was promoted, if you
recall, by XML pioneer Tim Bray, who
nominated as a “Top Twenty” candidate
Adam Bosworth, famous for Quattro Pro,
Microsoft Access, and Internet Explorer 4
even before he went on to become BEA’s
chief architect before recently leaving the
Java app server company to join Google,
Inc.
 Readers very soon nominated another
Google staffer (since 2002), namely Rob
Pike, an early developer of Unix and the
windowing system (GUI) technology, and
a long-serving member of the Unix team
at Bell Labs before he joined Google.
 Pike joined Bell Labs in 1980, the same
year he won the Olympic silver medal
in archery. Since he received several
nominations, there is clearly something
deeply appealing about a world-class
archer going on the following year to hit
the bull’s eye by writing the first bitmap
window system for Unix systems (since
then he has written 10 more).
 Pike became well known for his ap-
pearances on “Late Night with David
Letterman,” which ranks him, profile-
wise, right up there with Linus Torvalds,
another nominee (no surprise there).
 Hero of the open source movement,
geek made good, thorn in Bill Gates’ side,
Torvalds, it has been said, “embodies the
idea that there is always another way, an
antidote to the Microsofts of this world,
evidence that the idea of the ‘commu-
nity’ within IT is still there.” As one wit
expressed it, “If it wasn’t for the presence
of Lara Croft and Xena Warrior Princess,
techies around the world would have
posters of Linus on their walls.”
 Anders Hejlsberg, another nominee
originally from Scandinavia, is the Dan-
ish-born genius associated with Turbo
Pascal, Delphi, C#, and the Microsoft
.NET Framework. Hejlsberg is one of the
industry’s most charming and modest

high achievers – a “serial success” and a
worthy nominee.
 Arthur van Hoff, the programming leg-
end who now works at TiVo, was another
early nominee. One of the Java geniuses
at Sun (he is said to have almost as many
patents as Bill Joy), in 2002 van Hoff
started Strangeberry, which TiVo bought
in January of this year with the aim of en-
suring that next-generation TiVos will be
able to recognize Web content and direct
it to the appropriate home device.
 Sam Ruby, nominated for being “prob-
ably the most widely read blogger on
the planet,” is a 21-year veteran of IBM
who has been hailed as a “Web services
visionary.” Ruby is a member of the board
of directors and vice president of the
Apache Software Foundation; a developer
on the Apache SOAP project; chairman of
the Jakarta project; and a member of the
PHP group, a select group of developers
who contribute to core PHP.
 Some of the most interesting nomina-
tions thus far have been of the “unsung
heroes” of i-technology – or the less-sung
ones, if you will. Take for example one
of the three creators of XP, Kent Beck.
Author of the first book on the topic,
Extreme Programming Explained, pub-
lished in 1999, Beck was nominated by a
reader: “For (arguably) pioneering, and
certainly ruthlessly promoting, the no-
tion that change (specifically, to require-
ments of commercial software) must
be embraced (actively designed for),
not avoided, and that trying to design
everything once and for all up-front is an
exercise in futility.”
 There are those who believe excel-
lence is not a skill but an attitude. Still
others say that excellence is in the details.
Whatever the truth, and it’s most likely a
mix of both, the search will go on. So far
no fewer than 40 individuals have been
identified by readers as possible candi-
dates for the top 20 positions. Feel free to
keep nominating; by the end of the year
we shall be able to draw up the definitive
list of whom readers consider to be The
Top Twenty Software People in the World.
The address for nominations, again, is
toptwenty@sys-con.com.

From the Group Publisher

Sung and Unsung
i-Technology Heroes

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Beatty–Lima
 Executive Editor: Nancy Valentine
 Associate Editors: Jamie Matusow
 Gail Schultz
 Assistant Editor: Natalie Charters
 Online Editor: Martin Wezdecki
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Calvin Austin, Bill Burke, Satadip Dutta,

Ajith Kallambella, Jeremy Geelan, Chet Haase,
Christopher Hearn, Wolf Hengevoss,

Onno Kluyt, Ken Ramirez, Michael J. Remijan,
Derek Yang Shen, Dmitri Trembovetski,
Venkat, Coach K. Wei, Joe Winchester

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Kristin Kuhnle, kristin@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media, and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to

technology audiences

both in North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

W

���������������������������������

www.SYS-CON.com/JDJ November 2004 7

NOVEMBER 2004 VOLUME:9 ISSUE:11

contents
JDJ Cover Story

40

Java Gaming
by Chet Haase and Dmitri Trembovetski

52

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

Sung and Unsung
i-Technology Heroes
by Jeremy Geelan.................................3

VIEWPOINT

Have You Checked
Your Basement Lately?
by Venkat.................................8

JAVA ENTERPRISE VIEWPOINT

Java on Wall Street
by Yakov Fain.................................10

PORTLET SPECIFICATION

Understanding Portals
and Portlets
Creating a customized portal
by Ken Ramirez.................................12

DESKTOP JAVA VIEWPOINT

Square Data and Round Holes
by Joe Winchester.................................50

FIRST LOOK

Taking the Pain out of Large-
Scale Java Development Projects
Managing development environments
by Wolf Hengevoss and Christopher Hearn.................................58

JSR WATCH

From Within the Java Community
Process Program
Moving the community forward
by Onno Kluyt.................................62

SPECIFICATION

EJB 3.0 Preview
Part 1: The basic programming model
by Bill Burke.................................18

CORE AND INTERNALS VIEWPOINT

J2SE 5.0 Ready for Business
by Calvin Austin.................................34

EVENT NOTIFICATION

Distributed Notifi cation
with Java RMI
Server-to-client communication
by Michael J. Remijan.................................36

J2SE 5.0

Exploring Enums
The wait is fi nally over
by Ajith Kallambella.................................46

by Satadip Dutta Creating a Pet Store Application
by Derek Yang Shen

24

Features

24

BUILDING
MANAGEABILITY

Using the management and monitoring APIs
 to build application manageability

www.SYS-CON.com/JDJ8 November 2004

any of you have been living in the
same house for several years. In the
process you may have accumulated
furniture, clothes, antiques, etc., and

have forgotten why certain things were purchased
in the first place or that certain things even exist in
your basement.
 Large enterprises have large basements.
Their limited space is overflowing with existing
hardware, software, and applications. Why is
it that as technology has advanced and newer
systems are being purchased, many companies
still have the 30-year-old mainframe and its
related technologies in their IT basement? I’m not
suggesting that you throw out the mainframes.
The more technology that comes out each year,
the more everyone is buying and piling it in
their basement without checking to see if they
need it and whether an existing system needs
to be eliminated first. And how will the newly
purchased products work in conjunction with
existing systems? Java technology, introduced
into an enterprise without a plan, compounds the
existing chaos as anything else. The Java platform
includes some APIs to help enterprises alleviate
the problems and manage their applications but
these APIs are rarely utilized.
 If you are organizing your basement, creating
space and maybe thinking of buying new stuff
to fill the newly created space, this time ensure
that there is some way to keep inventory. Track
applications, services, and components through
a knowledge repository. Ensure that what you buy
works well with what you already own. Last of all,
manage everything you own so you can finally
track and realize the much sought after ROI.
 Renovation, integration, and management
– these are the three stages needed to organize an
enterprise’s IT landscape.

Renovate
 The renovation stage is the least automated of
the three. When renovating, an enterprise needs
to take a hard look at what they own and decide
if there are similar functionalities in multiple
places, whether certain tools are redundant,
and whether certain applications are even being
used. It involves manually sifting through the IT
landscape and compiling a knowledge base. I’ve
come across situations where applications that
were not being used were still being supported in
a production environment.
 A catalog of applications, components, and

services needs to be created with an enterprise-
wide metadata repository containing attributes
about these services. The repository also needs
to include policies, standards, and guidelines for
building or buying new stuff. A simple repository
and knowledge management tool can be created
using Java technology like JSP and servlets, the
Java Metadata API, and the Web services–related
APIs. This can be searchable and modifiable and
gives a unified view of the IT landscape.

Integrate
 The integration stage involves making archi-
tectural decisions and understanding relevant
scenarios. The Java technology platform has
strong support for messaging and Web services
including service description and discovery,
security, and distributed computing. There are
also various pure play, multi-protocol enterprise
service bus platforms based on Java that have
emerged that allow integration in a heteroge-
neous environment. The ESB platforms are
branded as business integration platforms. They
support various messaging architectures and
include support for JMS, JCA, and SOAP. The
Java Connector Architecture is an integration
mechanism that is part of the J2EE specifications
to integrate to enterprise information systems.

Manage
 An enterprise needs to factor in management
of their components and services early on in the
architecture and design phase. The Java platform
provides Java Management Extensions (JMX)
as a part of its core. I’ve seldom seen enterprise
architects design their software components and
services to include a management interface in ad-
dition to whatever business interfaces are needed.
There is no comprehensive offering from the
vendor community yet, although management
platforms are starting to emerge. Many enterpris-
es are creating reusable application frameworks
and then using them to build their applications. If
inclusion of a management interface to software
components and services is instilled into the
enterprise architects, it will ensure that the appli-
cations are now clean, organized, well integrated
and well managed.
 As enterprises embrace Web services and SOAs
and transform themselves into service-oriented
enterprises, the road ahead starts with renovat-
ing the basement and utilizing all the available
features of the Java platform.

Viewpoint

Venkat

Have You Checked
Your Basement Lately?

M

Venkat heads

 technology consulting

at Infosys for the

mid-west region. He

has over 12 years

of experience in

distributed computing,

technology strategy

and enterprise

 architectures. He

served as the chief

technology officer in

a software company

prior to joining Infosys,

developing middleware

and embedded

systems products.

Venkat has completed

PhD courses in inter-

disciplinary studies

and has an MS in

aerospace engineering

from the University of

Alabama, Tuscaloosa,

and a B.Tech from

The Indian Institute of

Technology, India.

venkat@sys-con.com

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com
Advertising Sales Director:

 Robyn Forma robyn@sys-con.com
National Sales and Marketing Manager:

 Dennis Leevey dennis@sys-con.com
Advertising Sales Manager:

 Megan Mussa megan@sys-con.com
Associate Sales Managers:

 Kristin Kuhnle kristin@sys-con.com
 Dorothy Gil dorothy@sys-con.com
 Kim Hughes kim@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com
Associate Editors:

 Jamie Matusow jamie@sys-con.com
 Gail Schultz gail@sys-con.com

Assistant Editor:
 Natalie Charters natalie@sys-con.com

Online Editor:
 Martin Wezdecki martin@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com
Lead Designer:

 Tami Beatty-Lima tami@sys-con.com
Art Director:

 Alex Botero alex@sys-con.com
Associate Art Directors:

 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com
 Richard Silverberg richards@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com
Web Designers:

 Stephen Kilmurray stephen@sys-con.com
 Matthew Pollotta matthew@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com
Accounts Payable:

 Betty White betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com
National Sales Manager:

 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com
 Monique Floyd monique@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

ront office financial applications
that place and execute orders
are different from many others,
since real-time trading systems

must be blazingly fast and reliable. A
few seconds delay may cost a financial
brokerage company millions of dollars
and potential penalties.
 If, back in the ’90s, you’d suggested
using Java for processing split-second
stock market orders, most of the New
York programmers would just simply
say: “faggedaboudid.” If you want to
have some fun, read old articles on
using Java for Wall Street applications.
Here are some statements made a long
time ago in 1997:
• Java is strong on the front end, but

we do not foresee it being used
for very large number-crunching
applications.

• Java is fine only for very thin clients.

 A couple of years ago I was participat-
ing in the design and development of
a multitier and multiplatform equities
trading system that was built around
Java Messaging and Enterprise Java-
Beans (both session and entity beans).
This real-time system has successfully
replaced a legacy C++ application,
has been deployed in production, and
worked happily ever after. Not only was
it more stable than the legacy system,
but it was a lot more scalable. Multi-
threaded listeners retrieve orders from
one or more message queues and send
them to a cluster of J2EE application
servers. Need more processing power?
Just add another application server
to the cluster, add more queues, and
purchase additional communication
lines with the stock exchange. No code
changes required.
 In September I attended the confer-
ence “High Performance Technology
on Wall Street.” If I had to describe this
event in only one word, I’d use the word
“grid.” If I was allowed to add a second
word, this would be “blades,” and the
third one would be “Java.”

 Software vendors have casually
talked about using various Java technol-
ogies in high-speed real-time applica-
tions. Most of the vendors were either
presenting software or hardware for
grid computing. Blade servers are also
becoming popular. Blades have nothing
to do with shaving. Just imagine a metal
cabinet with multiple narrow slots.
Each slot hosts a blade server, which
is a board with two or four processors,
memory, and a local hard drive. All
blades share high-speed I/O switches
for communication with the rest of the
world. Grid servers and agents are the
software that supports such parallel
computing.
 Speakers presented colorful diagrams
with hundreds of parallel jobs running
on a grid; if one of the servers fails, the
job gets redirected to another blade.
Nice! But let’s look at this technology
from a practical point of view. Propri-
etary computation-centric, financial
analytic software can be more or less
easily divided into a set of parallel Java
jobs. But how about running a hundred
parallel application servers? This is
also possible…if you have the budget
to purchase hundreds of licenses for
production, contingency, and QA envi-
ronments. Most likely, these hundreds
of servers will need to access either
some data warehouse or a transactional
database. If your system can’t move the
data fast enough between your applica-
tion servers and the database, I/O may
become a bottleneck of such a system.
It’s like driving a Ferrari on local streets.
 I like this powerful technology and
encourage you to present it as an option
to your users. Can you process tera-
bytes of data? Yes! Can you double the
throughput? Sure! Technology is avail-
able…as long as you guys can afford it.
 Another interesting topic was
using XML for real-time systems.
We already got used to application
servers, database servers, Web servers,
directory servers, intelligent business
servers…please welcome: XML Server

Farm. These agricultural machines are
responsible for parallel XML parsing.
If a system needs to send an order to
a stock exchange to buy a hundred
shares of SUN, we try to minimize
the number of bytes that have to be
processed, and “SUN,100” looks more
attractive than “<Symbol>SUN</
Symbol><Quantity>100</Quantity>”.
Who knows, maybe a couple of years
from now the “slow XML” will be as
funny as a “slow Java” is today.
 Java feels at home in middle and
back office applications that calculate
risk and perform financial model-
ing utilizing functions for nonlinear
optimization, statistical analysis,
time-series analysis, and others. Some
applications analyze trades that have
already happened. As the brokerage
industry introduces more and more
regulations, financial giants are being
fined heavily for cutting corners and
breaking the rules. Applications that
can process enormous amounts of
data and weed out violations receive
prime funding. Even though these Java
applications may not need to process
orders in real time, they also need a lot
of power to sift the terabytes of data
through various rule engines. These
business intelligence servers use such
in-memory gadgets as embedded Java
databases, asynchronous nonpersis-
tent queues, data caching, and parallel
processing. Have I mentioned grids and
blades yet?
 Some heavy-duty Java gurus try to
stay away from business applications,
believing that the real fun coding is in
companies that develop compilers,
browsers, search engines, application
servers, and the like. Trust me, these
IT guys on Wall Street are not count-
ing crows either. What’s even more
important for real geeks, you can work
for a solid financial company and
have as many earrings as you’d like, a
long ponytail, grow a beard, and wear
T-shirts and jeans. Wall Street welcomes
the James Gosling look and feel!

Java Enterprise Viewpoint

Yakov Fain
Contributing Editor

Java on Wall Street

F

Yakov Fain works as a Java

architect for a major bank

in New York City. He wrote

the book The Java Tutorial for
the Real World; an e-book Java
Programming for Kids, Parents
and Grandparents; and several

chapters for the book Java 2
Enterprise Edition 1.4 Bible. Ya-

kov holds a masters degree in

applied mathematics. For more

information please visit www.

smartdataprocessing.com.

yakovfain@sys-con.com

November 200410 www.SYS-CON.com/JDJ

www.SYS-CON.com/JDJ12 November 2004

t used to be difficult if you wanted to
create a Web-based site that offered
users the ability to access various
systems from a single page. Systems

were too severely disjointed and required
a huge investment of time and work in
order to bring them together in a single
Web page.
 Although there are many efforts tak-
ing place in the Java arena to provide
systems integration, none have made the
same impact as portals.

Understanding the JSR 168 Specification
 The current breed of portals either al-
ready support the JSR 168 specification,
or the developers are working quickly
to try and bring them up to par with the
specification. JSR 168 provides instruc-
tions to both portal software manufac-
turers and portlet developers.
 For portal software manufacturers,
this JSR provides the details on how a
portal should be developed, what inter-
faces and objects need to exist, the com-
munication process and sequence that
should occur, security, and much more.
For the portlet developer, it provides the
interfaces that need to be implemented
and used, the lifetime and scope of the
portlets, and other related details.
 There is yet a third perspective in this
whole story, that of the end user. The
end user views a portal as a collection
of portlets presented on a single portal
page, produced from requests made to a
portal site (see Figure 1).
 As an example, if you surf over to
http://my.yahoo.com, you can register to
have a personalized page that presents
you with the content you sign up for, all
from a single portal page. As shown in
Figure 2, the page provided me with a
Message Center Portlet, an RSS Head-
lines Portlet, a Scoreboard Portlet, and
several other portlets that I had signed
up for.

 Before continuing, let’s make sure
you understand the concepts and terms.
• Portals: An HTTP-based site hosted

with special portal software that
allows the aggregation of several dif-
ferent back-end systems, processes,
or sites brought together through
a single portal page. Portals may
provide additional services such as
single sign-on security, customiza-
tion, personalization, and back-end
administrative/declarative applica-
tion development.

• Content aggregation: The process
of bringing together content from
disjointed systems, via portlets, and
controlled through the use of a portal.

• Portlet container: Controls the
access, lifetime, and interaction of a
single portlet. Provides the content
returned from a portlet back to the
portal for merging with the content
of other portlets.

• Portlet: Provides content to its call-
ing portal container for the purposes
of being displayed on a portal page.

• Fragments: The content generated
by a portlet is known as its fragment
or fragment code. This is the HTML
code generated from the portlet’s
rendering code.

 Figure 3 depicts the relationship
among the entities specified above.
 Since a portlet provides the render-
ing code for its portlet window, it’s
responsible for providing the imple-
mentation. However, most portlets will
dispatch and rely on a JSP to provide the
actual rendering code. Figure 4 shows
the sequence as it applies to a portal
page that has just received an action in
one portlet. That portlet, along with the
other portlets on the page, must also
render themselves.

Servlets and Portlets
 Portlets share many similarities with
servlets except for a few noted items.
Portlets don’t generate complete HTML
documents; they’re only interested in
generating fragments that are included
on the final portal page. They aren’t
allowed to generate HTML code that
contains tags such as base, body, iframe,
frame, frameset, head, HTML, or title.
Imagine what would happen if all the
portlets decided to provide a body tag.
The portal wouldn’t know whose body
tag to use. The portal decides where
these tags should go and provides ad-
ditional tables, rows, and columns as
needed for each of the portlets.

Portlet Specification

by Ken Ramirez

Understanding
Portals and Portlets

I

Ken Ramirez has 17 years

of experience providing

development services,

consulting, and training to

companies (both large and

small) throughout the United

States. He consults in various

market industries including

finance, insurance, computer-

aided design, community

portals, and automobile. Ken’s

Java expertise includes J2EE,

XML, portals, UML, and many

open source technologies.

His latest venture is the

www.TheJavaThinkTank.org

community portal site.

kramirez@TheJava
ThinkTank.com

Creating a customized portal

 Figure 1 Interaction between the user and the portal

Interaction between user and portal

Portal/Portlet
Container

V

Resulting portal page is sent back to the user

Page is
returned
end-user.

Portlet A

Portlet C

Portlet C

V

V
V

13November 2004www.SYS-CON.com/JDJ

 Portlets aren’t directly tied to a
particular URL. Instead, they use
methods such as createActionURL()
or createRenderURL() to construct a
URL that is needed to allow a client
to fire actions to retrieve renderings
from the currently executing port-
let. On the client side, clients aren’t
allowed to interact directly with a
portlet. The requests or submissions
are tunneled through the portal
server. The URL has all the informa-
tion that the portlet container needs
to determine which portlet must be
called and what type of functionality
should be executed.
 Two other very important differences
are elaborately pronounced in the user
interface. Anyone viewing a portal page
for the first time will notice that they
contain special adornments that can be
utilized by users to minimize, normal-
ize, or maximize the portlet window. Us-
ers also use the decorations to enter the
Edit mode or View mode of the portlet
(see Figure 5). Finally, portlets can exist
on the same page multiple times. Most
of the time, the user is given the ability
to control which portlets show up on a
particular portal page. This is known as
personalization.
 Although portlets can access both
servlets or independent JSPs directly
by including their output within the
portlet’s rendered output, the direct
output of a servlet or an independent
JSP should not be channeled back to
a portal page unless the content is
stripped of all of the offending HTML
tags mentioned above. Dispatching
is handled through a special object
known as a PortletRequestDispatcher.
Besides passing control directly to
another portlet, servlet, or JSP, the port-
let may choose to simply include the
output from the entity, without losing
the ability to provide further output ap-
pended to the end, essentially becom-
ing an aggregator.

The Life of a Portlet
 A portlet is initially called by the
portlet container. In fact, its entire life
is managed by the container (including
requests and responses). The portlet
inherits from the GenericPortlet class.
The container loads the portlet and
then calls its init() method. There are
two versions of this method. The first
version receives the PortletConfig
object and stores it away for later use.
This version then calls the parameter-
less version to perform any overridden

code provided by the portlet author.
Keep in mind that the portlet may
be loaded and its init() method may
have been called, but it might not be
provided with a session until later. This
is important to note, because if you
need to store attributes within the init()
method, you’ll need to use the context
object.
 Within the deployment file that
accompanies the portlet distribution
file, the author can place initialization
parameters, which can be pulled out
by the portlet instances at runtime via
the configuration object. This object
can be pulled out by calling the Gener-
icPortlet’s getPortletConfig() method,
which returns a PortletConfig object.
Using this object, the author can ac-
cess the initialization parameters by
calling the object’s getInitParameter()
for each parameter that the portlet is
interested in.
 Portlets can also place titles and
other pieces of information in ac-
cordance with the XML Schema into
the deployment file. In addition, any
displayable information can be kept in
a resource bundle associated with the
deployment descriptor file and be ac-
cessible at runtime. The values can be
language-specific to assist in interna-
tionalizing the portlet.
 Each time the client performs an ac-

tion on a portlet, the portlet is invoked
by the container via its processAction()
method. When the portlet container
finds it necessary to retrieve a viewing
of the portlet, it calls the render() meth-
od. This method determines the type of
view that should be rendered and calls
one of three other methods: doHelp(),
doView(), or doEdit(). These three
methods should be overridden by the
portlet author if the author expects to
receive calls for any of these methods.
The calling of these methods is con-
trolled by the portlet author through
the portlet deployment descriptors file
(portlet.xml).
 When the portlet container calls the
action method of the portlet, there are
two objects passed to it: first Action-
Request and, second, ActionResponse.
Using the ActionRequest, the portlet
can access the parameters of the
request, the window state, the portlet
mode, the portlet context, the session
object, and the portlet preferences
data.
 The same two objects are sent to the
render method of the portlet, except
with slightly different names: Render-
Request and RenderResponse. Keep in
mind that if you wish the parameters to
become available in the render method
or the resulting JSP, you’ll need to move
it there yourself using the ActionRe-

 Figure 2 An example of a portal page

www.SYS-CON.com/JDJ14 November 2004

sponse.renderParameters() method,
passing it the result of calling ActionRe-
quest.getParameterMap(). You can later
fetch the parameters from within the
render method using RenderRequest.
getParameter().
 Remember the relationship between
the URL used to invoke the portlet
and the actual method that is called
within the portlet. If you expect that an
interaction from the user will result in
a call to the portlet’s processAction()
method, you should call createAction-
URL() to have that type of URL created.
For render requests, call createRende-
rURL().
 When the portlet has completed its
job, the container will call the portlet’s
destroy() method.

Portlet Preferences
 Users expect that portlets can
be modified to provide customized
content. To provide customization,
portlets support preferences, which
are name/value pairs that can be
assigned an initial value and later
tailored to other values based on user
preference.
 Preferences can be modified dur-
ing the processAction()method and
inspected during any of the render
methods. Preferences are altered or
viewed through the PortletPrefer-
ences object. The interface provides
methods to retrieve, change, or store
preferences. Since preferences can
be read-only, there is also a method
to check if a preference can be
modified.
 Changes to preferences aren’t
committed until the store() method
is called. It may only be called during
the processAction() method.
 Preferences are initially defined
within the portlet’s deployment file

and given a default value. In addition,
developers may assign a validator
object, which implements the Prefer-
encesValidator interface. This object’s
implementation can verify that values
assigned to preferences are legitimate.
Otherwise, the validator can throw a
ValidatorException. Developers are
encouraged to include information in
the exception regarding the prefer-
ences that failed.

Portlet Modes and Window States
 The portlet modes of a portlet are
reflective of the kind of data the cur-
rent portlet is displaying to the user.
The standard modes are View, Edit,
and Help. In the View mode, the port-
let should display the normal content,
based on the functionality offered by
the portlet. For example, if the portlet
is a stock portfolio portlet, it should
display the symbols and current
price/change for this mode.
 In Edit mode, the portlet should
present the user with the ability
to customize whatever features
are customizable for the portlet.
For our stock portfolio portlet
example, the portlet might present
the ability to adjust the stocks in the
portfolio, changing the colors to
show up and/or down activity or
changing the background color for
the portlet.
 The Help mode should display
either a full description of how the
portlet can be used (explaining both
the View and Edit modes) or context-
sensitive help explaining selected
features of the portlet.
 If the portlet wishes to determine
which mode it’s currently in when
called, it can do so by calling the
ActionRequest or RenderRequest
objects’ getPortletMode() method.

 Portlets should specify their desire
to handle any of the portlet modes
by including the modes within the
deployment descriptor’s <supports>
element.
 The render() method will fall back
to one of the three methods –
doView(), doEdit(), and doHelp() – in
order to have the portlet provide the
implementation, depending on what
portlet mode is currently in use. Most
portal pages will provide the function-
ality that enables the users to choose
which mode they wish to enter. This
can be done by adornments placed
on the title bar of the portlet.
 The Window states allow the port-
let to know the user’s aspiration to
have the portlet minimize its window,
maximize its window, or normalize
the window (bringing it from mini-
mized or maximized mode). The
portlet should always check what
Window mode it’s in before rendering
data.

Portal Context and Session
 The portlet can retrieve context
information about the portal host-
ing it by accessing the PortalContext
object. Utilizing this object, the portlet
can call getPortalInfo() to retrieve vital
information such as the portal vendor
and portal version. It can also retrieve
portal properties utilizing getProp-
erty() and getPropertyNames(). The
PortalContext object can be retrieved
by calling the getPortalContext()
method.
 Portlets can store session data as-
sociated with the user’s active session.
There are several ways in which a
server process can store data for
later use within the session. These
include:
• HTTP cookies
• SSL sessions
• URL rewriting

 The portlet specification provides
the developer with an interface
named PortletSession that hides the
implementation details, providing
a simple interface for managing the
various data pieces in a session utiliz-
ing the above-mentioned methods.
The portlet session is guaranteed to
be the same session across all portlets
that result from requests made by the
user.

Portlet Specification

 Figure 3 Relationship between the entities

Response

Request

Po
rt

al

Po
rt

le
t

Co
nt

ai
ne

r RSS
Portlet

Weather
Portlet

Score
board
Portlet

���

���

����������������������

��

��

���

���

��

���

��

��

��

��

������������������
����������������

�����
��������� �����

��� ����� �� ��� ���������� ��� ������� ����� �� �
��� ��� ��������� ��� ��� �� ���� ���� �� ��� ���� ����� ������� ��� ���� �������� ���

� �� ���� ��� ������
�� �� �� ��� ���� ���� �� ������ ���� ���� ����� ����� �

�� �����
�

���� �
��� ���� �������� ��� �������� �

������ �� ��� �� ���
��������� ���� �� ��

�������� ������� ������
�� ����� ���������

���� ��������� ��������� �������� ���������� ����
�� ��� ������� �� �� �� ��� ��������

�� ��

www.SYS-CON.com/JDJ16 November 2004

Caching
 Portals can provide portlets with a
cache to store rendered output. The
cache can be set to expire at a particu-
lar time, such as every 500 seconds.
When required, each cache is created
one to one with the user session and
only for that particular portlet. The
uniqueness of the cache is based on
both the portlet and the user. The set-
tings are placed in the portlet’s deploy-
ment descriptor file distributed with
the portlet. However, the portlet can
alter the settings at runtime utilizing
the RenderReponse object.
 The portlet container can choose to
use the requested portlet cache if re-
sources permit; otherwise, it can shut
down caching altogether. If the portlet
container chooses to use caching,
any request from the client to simply
render content causes the portlet
container to first check if the content
has expired and, if it hasn’t, returns
the contents without calling any of the
portlet’s render methods. Otherwise,
the methods are called once again,
and the content is cached for later
requests.

Putting the Pieces Together
 The true advantage to producing
portlets is realized when content
providers are able to integrate existing
portlets onto a single page, essentially
providing users with portal pages that
result in a portal site.
 The actual semantics for achiev-

ing this will differ from one portal
vendor to another. For example, some
vendors will provide an administra-
tive tool that can be accessed to build
the portal site, bringing together the
portlets by allowing administrators/
developers to search for the type of
portlets they wish to offer users, and
then providing the plumbing to make
this all happen.
 The end result of all the admin-
istrative effort will be a portal page
deployment file or perhaps some kind
of registry (which can even be handled
via an LDAP system) to produce the re-
sulting site. The portal then utilizes the
information stored in these data stores
to produce the site at runtime. The data
stores might have information such as:
• The name of the portal class and its

logical name
• A description of the portal class
• Preferred real estate location and

size
• Roles that may view the portlet

 The portal may also maintain in-
formation about the individual pages,
such as:
• Which portlets are included in what

pages
• Initial portlet modes or Window

states
• Flow of one portal page to another

 These are just some of the pieces of
information that a portal may poten-
tially store as the site is administered.

Handle Your Threads
 The portlet container handles mul-
tiple requests to a portlet by reusing the
same instances of a portlet class, call-
ing them on different threads through
the same methods. This means that
your code should be thread safe but

yet avoid locking methods that can de-
grade performance or, worst yet, cause
a deadlock. How can you provide a fast
and efficient thread-safe method and
yet still avoid locks? Make your portlets
stateless. Sometimes object locks are
unavoidable, but if they’re necessary,
try to do it with code that performs well
and has the least chance of causing
deadlocks.

What Does the Future Hold?
 Although the portlet specification is
in final release, this is simply version
1.0 of this specification. Future ver-
sions of this specification will outline
the plans for:
• Filters: Similar to servlet filters – in

fact, some vendors have already
implemented this optional feature
using the same type of method
offered by servlets.

• Interportlet communication: This
will allow one portlet to hook itself
into another portlet, so that it can
immediately be alerted to changes
to the second portlet.

• Outer markup modification: Today
portlets can only produce markup
kept within their fragments. Future
versions of the specification will allow
portlets to influence the markup
outside of their fragments (perhaps
influencing the background colors of
other portlets based on changes to
the preferences of one portlet).

Summary
 The information presented in this
article was based solely on the portlet
specification in its final release form.
However, the only true way to learn any
technology is to start using it. If you visit
the Apache.org Web site (www.apache.
org), you’ll find the portals project. You
should download and install the Pluto
project and begin to generate some
portlets. Pluto is the reference imple-
mentation for the portlets technologies
and, as such, is completely compliant
with the latest and greatest iteration of
the portlet specification.
 Next month, I’ll be back to show
you how to build an Image Viewer
Portlet that will allow you to select
images from the Web site you wish to
view. In the process, you’ll become
acquainted with many of JSR 168’s
features, and also learn how to deploy
portlets to Pluto.

 Figure 4 Sequence of performing action and rendering

Portal/Portlet
Container

V

Portlet B

V VPortlet C Dispatch to JSP

Dispatch to JSP

Dispatch to JSP

V

Portlet A

V
V

3. The render method is called

4. The render method is called

5. The render method is called

2. The form is submittedto process Action

V
V

1. Form is submitted

Client

 Figure 5 Examples of some adornments

Portlet Specification

www.SYS-CON.com/JDJ18 November 2004

his article is part one of a
two-part series on the new
Enterprise JavaBeans (EJB) 3.0
specification. Prior knowledge

of J2EE/EJB will enable a better read-
ing experience. Part 1 focuses on the
basic programming model of EJB 3.0.
Part 2 will focus on more advanced
features like dependency injection
and complex persistence mappings
(entity inheritance and multitable
mappings).
 Over the past 15 years, each revi-
sion of middleware specifications
like DCE, CORBA, and J2EE evolved
into a larger, more complex definition
of new functionality and bloatware.
Rarely has a standards-based specifi-
cation stepped back and actually tried
to make development easier for its
user base.
 Until now that is. The mandate of
the EJB 3.0 expert group to focus on
ease of use and simplification is a
refreshing unprecedented change in
a standards body. This article focuses
on the goals of EJB 3.0 and walks you
through the new model for session
and entity beans.

The Difficulties of EJB 2.1
 There are a lot of problems in EJB
2.1 that make it difficult to develop
EJBs. XML deployment descriptors
have continually been the bane of
developers. Tools like XDoclet have
helped alleviate some but not all of
the complexity. Removing these files
would go a long way toward making
things simpler. One big annoyance in
EJB is the sheer verbosity of the API.
You have to create a number of inter-
faces and classes to implement one
EJB: a remote and a local interface, a
remote and local home interface, and
finally a bean class. Your bean classes
have to implement EJB interfaces that
have numerous callback methods
like ejbCreate or ejbPassivate that are
often never even used at all as part
of the application logic. Yet another

complaint is that EJBs are completely
untestable outside the context of
the container as components like
entity beans are abstract classes.
Finally, EJBQL in its current form is so
significantly hobbled that developers
continually have to escape to straight
JDBC and SQL, or ditch their CMP
efforts entirely and replace them with
something like Hibernate.
 Fortunately, the EJB 3.0 specifica-
tion is working to address most of
these problems. Let’s take a look at
how this is being accomplished.

Deployment Descriptors
 JDK 1.5 has a new feature called
annotations defined in the JSR-175
JCP specification. Annotations allow
you to define configuration infor-
mation as an interface, then apply
instantiations of this configuration
as metadata attached to a class,
method, field, constructor, package,
or parameter. For those familiar
with XDoclet, it is very similar except
the metatags are typed syntax that
is checked by the Java compiler. This
metadata is even available at runtime.
The EJB 3.0 specification uses anno-
tations so that you can declare your
EJB metadata directly within the bean
class.

import javax.ejb.*;

@Stateful

public class ShoppingCartBean implements

ShoppingCart

{

 @Tx(TxType.REQUIRED) @MethodPermission(

{"customer"})

 public void purchase(Product product,

int quantity) {...}

 @Remove void emptyCart() {...}

}

 The @Stateful annotation marks the
ShoppingCartBean as a stateful ses-

sion bean. @Tx denotes transaction
demarcation, while @MethodPermis-
sion defines role-based security for
the bean method. EJB 3.0 provides an-
notations for every type of metadata
so that no XML descriptor is needed
and you can deploy your beans simply
by deploying a plain old JAR into your
application server. This doesn’t mean
that XML completely disappears; it
becomes optional. If you don’t like
to expose infrastructure metadata
directly in application logic, all anno-
tation types are overridable in an XML
deployment descriptor.

Simplified API
 The stateful session bean example
above is complete. You’ll notice that
without the annotations, Shopping-
CartBean is a plain old Java object
(POJO). It does not have to extend
javax.ejb.SessionBean, or implement
any of the callback methods like ejb-
Passivate(), ejbCreate(), ejbRemove(),
etc. Session beans must also imple-
ment at least one interface. What’s
great about this interface is that it, too,
is plain Java.

public interface ShoppingCart

{

 public void purchase(Product product,

int quantity);

 public void emptyCart();

}

 Another goal of EJB 3.0 is to provide
common sense defaults. A session
bean that implements only one inter-
face treats that interface as a local in-
terface by default. If you wish to make
your EJB remote, you must explicitly
tag the interface as such.

@Remote interface ShoppingCart

{

 public void purchase(Product product,

int quantity);

 public void emptyCart();

}

Specification

by Bill Burke

EJB 3.0 Preview

T

Bill Burke is chief architect

of JBoss Inc., member of

the EJB3 expert group, and

co-author of the JBoss 4.0
Workbook in O’Reilly’s

Enterprise JavaBeans,

4th Edition.

bill@jboss.org

Part 1: The basic programming model

���

���

�������������� ��

���

�� ����������������������

���������������
�����������������
�������������
�� ����������������
�� �� ��������������

� ��

www.SYS-CON.com/JDJ20 November 2004

Specification

 Remote interfaces do not have to
extend javax.ejb.EJBObject, nor do
any of the methods have to throw a
RemoteException as in the EJB 2.1
specification. EJB 3.0 tries to remove
the dependencies on RMI APIs.

Callbacks a la Carte
 The EJB 2.1 spec required you to
implement the interfaces javax.ejb.
SessionBean or javax.ejb.EntityBean.
Methods like ejbCreate(), ejbPassiv-
ate(), and ejbActivate() were never
used in your application and just
cluttered up your code. In EJB 3.0 you
can use these methods a la carte on
an as-needed basis.

Homeless
 Home interfaces have been com-
pletely removed for all EJB types.
They never made much sense for
stateless beans, and had only limited
use for stateful sessions. Looking up
a session bean gives you a proxy that
you can immediately use to invoke
on the session. Every time a stateful
bean is referenced from JNDI, a new
instance is created. It is assumed that
the first method called should initial-
ize the bean. Methods marked as
@Remove will destroy the stateful ses-
sion after the annotated method has
completed. Entity beans are created,
removed, and queried through the
new EntityManager interface which
will be described later in this article.

Entity Beans
 Entity beans are by far the big-
gest change in EJB 3.0; they received
a complete overhaul in this version
of the specification. One thing that
the EJB 3.0 expert group realized is
that a one-size-fits-all approach to
persistence does not produce a very
usable API. For instance, the portabil-
ity of 2.1 entity beans is nonexistent
as different vendors have different
database mappings. EJB 3.0 focuses
on an object-to-relational (O/R)
mapping that supports inheritance,
multitable mappings, join-tables, a

fully functional query language, and
SQL escapes. These are all the things
you would expect from an O/R per-
sistence engine. Another important
change to entity beans is that they
are pure plain Java objects and can
no longer be remotely accessed, or
provide transaction or role-based se-
curity boundaries. This approach to a
pure POJO has many advantages – the
biggest being that you can detach
and reattach entities to persistence
storage. We’ll see more on that later in
this article.
 Let’s walk through Listing 1. As
you can see, the order entity bean
is a plain Java object. The @Table
annotation specifies the table name.
The class contains private fields that
represent the state of the bean, while
get and set methods wrap the access
to these fields. The column mappings
are applied as annotations on the get
methods of the class. If you don’t
like this approach, you can declare
these mappings on the fields. @Id
is used to specify the primary key
field. @Column specifies the column
mapping while the @OneToOne
and @OneToMany persistent fields
use @JoinColumn to specify the
foreign key column of the related
table. OneToMany and ManyToMany
relationships are specified as a Col-
lection generic.
 All in all, the O/R mapping was
designed to be compact yet flexible
with intuitive defaults. For instance, if
you were relying on the container to
do auto-generation of your database
tables, only the @Entity and @Id
annotations would be required as
the rest of the persistence metadata
would have well-known defaults.

Interacting with Entity Beans
 Entity beans no longer have homes.
They are created as plain Java objects
using Java’s new operator and all in-
teraction between persistence storage
and application code is handled by a
new service called the EntityManager.
Listing 2 shows an example of this.

Attachment, Detachment,
and Reattachment
 What is interesting about the
checkout() method of our Shopping-
Cart bean is that it returns the order
object that it created. In EJB 3.0, the
old antipattern of value objects is not
needed because persistent objects can
be attached, detached, and reattached
to persistence storage. For example,
you could have a remote client that
created all the OrderItems and the
order object on the client-side, send
the order object over the network
in a remote EJB call, and have the
EntityManager create the order, or if
you’re updating, merge the changes to
the persistent object. Because they are
plain Java objects, entity beans can be
used in <jsp:useBean> tags and stored
in an HTTP session. You can imagine
a five-step wizard that allocates a
group of entity beans that holds the
state of the wizard, then, when the
wizard completes, interacts with the
EntityManager to create all the per-
sistent data. The programming model
becomes much simpler as you have
one object that you can pass around
from tier to tier to handle your creates
and updates. Here’s an example of do-
ing updates remotely:

Client

 Session session = jndi.

lookup("Session");

 Customer cust = session.

getCustomerByName("Bill Burke");

 cust.setAddress("123 Boston Road");

 cust.setCity("Concord");

 cust.setState("MA");

 cust.setZip("02143");

 session.updateCustomerInfo(cust);

 In the above example, the remote
client gets access to a customer ob-
ject through a method on a session
bean. All the setter methods are done
locally to an instance of customer in
the local VM. When the client is fin-
ished updating the customer locally, it

The mandate of the EJB 3.0 expert group to focus on ease of use and
simplification is a refreshing unprecedented change in a standards body”“

www.SYS-CON.com/JDJ22 November 2004

sends the customer over the network
to the remote session bean to be
updated in persistent storage. Listing
3 shows how the session bean would
be implemented.
 The getCustomerByName() method
simply searches for a customer of a
given name. When the customer object
is returned, it is detached from the per-
sistence engine and is no longer associ-
ated or managed by the EntityManager.
The updateCustomerInfo() method
receives the fully modified customer
and reattaches the object by calling
the merge() method. This causes the
EntityManager to do an update on the
customer’s row in the database.

Querying
 Unlike the EJB 2.1 specification, 3.0
has full support for dynamic queries.
You can build a query object through
EntityManager.createQuery(), then in-
teract with the query object to set page
sizes and arguments.

 Query query = entityManager.

createQuery("from Order o where

o.grandTotal > 5000.00");

 query.setMaxResults(50);

 return query.listResults();

 EJBQL is now a fully featured query
language that mirrors the functionality
of SQL. Support for group by, hav-
ing, inner and outer join, subqueries,
and bulk update and delete has been
added. Also, queries can now return
more than one value as well as a list of
objects. One of my favorite features of
the new query language is the ability to
project results onto any arbitrary Java
object by using a constructor directly in
the query. For instance, say you wanted
a page on a petstore application that
displayed a report on sales divided by
geographical area. The query might
look something like this:

SELECT new GeographicalReport(c.state,

sum(o.grandTotal)) From Customer c

join Order.customer Customer

GROUP BY c.state

 GeographicalReport is not an entity
bean, but rather a plain Java object.

The entity manager would execute the
query and allocate a GeographicalRe-
port object per row returned in this
example. Instead of iterating though a
potentially large untyped result set, you
can have the query manager automati-
cally populate the data structures you
need.

Coming Soon
 The first draft of the EJB 3.0
specification was announced in June
at JavaOne. As is, it is a good first step
at simplifying the EJB programming
model and fixing some of the deficien-
cies in the persistence model. Although
the specification is not due to be
finished until next year, some vendors
have committed to providing early-ac-
cess downloads so that you can play
with this new technology. All in all,
these are exciting times for EJB.
 Next month we will dive into more
advanced features of EJB 3.0.

References
• www.jcp.org/en/jsr/detail?id=220
• www.jboss.org/ejb3

Specification

Listing 1
@Entity

@Table(name="ORDER_TABLE")

public class Order implement java.io.Serializable

{

 private int orderId;

 private Date orderDate;

 private Collection<OrderItem> orderItems;

 @Id @Column(name="ORDER_ID")

 public int getOrderId() { return orderId; }

 public void setOrderId(int id) { orderId = id; }

 @OneToOne @JoinColumn("CUST_ID")

 public Customer getCustomer() { return customer; }

 public void setCustomer(Customer cust) { this.customer = cust;

}

 @OneToMany(cascade={CascadeType.ALL}) @JoinColumn("ITEM_ORDER_

ID")

 public Collection<OrderItem> getOrderItems() { return

orderItems; }

 public void setOrderItems(Collection<OrderItem> items) { this.

orderItems = items; }

}

Listing 2
@Stateful

public class ShoppingCartBean implements ShoppingCart

{

 @Inject EntityManager entityManager;

...

 public Order checkout()

 {

 Order order = new Order();

 order.setCustomer(this.customer);

 order.setOrderDate(new Date());

 order.setOrderItems(this.itemsInCart);

 order.setOrderStatus("INITIAL");

 entityManager.create(order);

 return Order;

 }

}

Listing 3
@Stateless

public class SessionBean implements Session

{

 @Inject EntityManager manager;

 public Customer getCustomerByName(String name)

 {

 Query query = manager.createQuery("from Customer c where

c.name = :name");

 query.setArgument("name", name);

 return query.getUniqueResult();

 }

 public void updateCustomerInfo(Customer cust)

 {

 manager.merge(cust);

 }

}

���

����������
��������

���������������
�����������

��������������������������������
���

��������������������
�������������

��
��
���������

�������������������������� �������������
��
���������������������� ���������������������������
���
���
���
���
���
���
�������������������

���
��

���
���
��
��
������������������������������

���
���
��
��
���
��
��
��
��
�������������������

www.SYS-CON.com/JDJ24 November 2004

avaServer Faces (JSF) technology is a new user interface
framework for J2EE applications. This article uses the
familiar Pet Store application to demonstrate how to
build a real-world Web application using JSF, the Spring
Framework, and Hibernate. Since JSF is a new technol-

ogy, this article will concentrate on the use of JSF. It presents
several advanced features in JSF development, including Tiles
integration and business logic–tier integration.

Java Pet Store
 The Java Pet Store is a sample application from the Java
Enterprise BluePrints program. It documents best practices,
design patterns, and architectural ideas for J2EE applications.
 MyPetStore, the sample application for this article, is a
reimplementation of the Java Pet Store using JSF, Spring, and
Hibernate.
 I won’t be able to cover all the features of the Pet Store in
one article. MyPetStore allows a user to browse through a
catalog and purchase pets using a shopping cart. Figure 1
provides the page-fl ow diagram.

JSF
 JSF is a server-side, user interface component framework
for J2EE applications. JSF contains an API that represents
UI components and manages their states; handles events,
server-side validation, and data conversion; defi nes page
navigation; supports internationalization; and provides
extensibility for all these features. It also contains two JSP
(JavaServer Pages) custom tag libraries, HTML and Core,
for expressing UI components within a JSP page and wiring
components to server-side objects.
 JSF is not just another Web framework. It’s particularly
suited, by design, for use with applications based on the
MVC (Model-View-Controller) architecture. The Swing-like
object-oriented Web application development, the bean
management facility, an extensible UI component model, the
fl exible rendering model, and the extensible conversion and
validation model are the unique features that differentiate
JSF from other Web frameworks.
 Despite its strength, JSF is not mature at its current stage.
Components, converters, and validators that ship with JSF
are basic. The per-component validation model cannot
handle many-to-many validation between components and

validators. In addition, JSF custom tags cannot integrate with
JSTL (JSP Standard Tag Library) seamlessly.

High-Level Architecture
 MyPetStore uses a multitiered nondistributed architecture.
For a multitiered architecture, the functionalities of an appli-
cation are partitioned into different tiers, e.g., presentation,
business logic, integration, etc. Well-defi ned interfaces isolate
each tier’s responsibility. A nondistributed architecture
means that all the tiers are physically located in the same ap-
plication server. Figure 2 shows you the high-level architec-
ture of MyPetStore.
 JSF is used in the presentation tier to collect and vali-
date user input, present data, control page navigation, and
delegate user input to the business-logic tier. Tiles is used to
manage the layout of the application.
 Spring is used to implement the business-logic tier.
The architectural basis of Spring is an Inversion of Control
(IOC) container based around the use of JavaBean proper-
ties. Spring is a layered application framework that can be
leveraged at many levels. It contains a set of loosely coupled
subframeworks. The use of the bean factory, application
context, declarative transaction management, and Hibernate
integration are demonstrated in this application.
 The integration tier is implemented with the open source
O/R (object/relational) mapping framework – Hibernate.
Hibernate relieves us of low-level JDBC coding. It’s less inva-
sive than other O/R mapping frameworks, such as JDO and
CocoBase. Rather than utilize bytecode processing or code
generation, Hibernate uses runtime refl ection to determine
the persistent properties of a class. The objects to be per-
sisted are defi ned in a mapping document, which describes
persistent fi elds and associations, as well as any subclasses
or proxies of the persistent object. The compilation of the
mapping documents and SQL generation occurs at system
startup time.
 The combination of the business logic tier and the integra-
tion tier can also be referred to as the middle tier.
 The integration between different tiers is not a trivial task.
MyPetStore demonstrates how to use the JSF bean manage-
ment facility and ServiceLocator pattern to integrate JSF with
the business logic tier. By using Spring, the business logic tier
and integration tier can be wired up easily.

Derek Yang Shen is a senior

software engineer at Overture

Services, Inc., in Pasadena,

California. Derek is a Sun

Certifi ed Enterprise Architect

and has been working with

J2EE exclusively for the past

fi ve years. He holds an MS in

computer science from UCLA.

derek@derekshen.com

by Derek Yang Shen

J

Creating a Pet Store
Application

...with JavaServer Faces, Spring, and Hibernate

Feature

25November 2004www.SYS-CON.com/JDJ

Implementation
 Now, let’s go through the implementation details, tier by
tier, of the UpdateShoppingCart, the most important and
complex use case in this application.

Presentation Tier
 The presentation tier tasks include creating and register-
ing the backing beans (explained later), writing JSP pages,
defining navigation rules, integrating with Tiles, and integrat-
ing with the middle tier. Our shopping cart screen looks like
Figure 3.

Backing Bean
 Backing bean is a JSF-specific term. A backing bean defines
the properties and handling logic associated with the UI com-
ponents used on a JSF page. Each backing bean property is
bound to either a component instance or its value. A backing
bean also defines a set of methods that performs functions for
the component.
 Let’s create a backing bean – CartBean – that contains
not only the properties maps to the data for the UI compo-
nents on the page, but also three actions: addItemAction,
removeItemAction, and updateAction. Because the JSF bean
management facility is based on Java reflection, our back-
ing bean does not need to implement any interface. Listing 1
provides the code segment of the CartBean.
 The CartBean contains a reference to a Cart business
object. The Cart business object contains all the shopping
cart–related data and business logic (the Cart class will be
discussed later). This approach, to include the business object
directly inside the backing bean, is simple and efficient. How-
ever, it tightly couples the backing bean with the back-end
business object. Another approach is to decouple the backing
bean and the business object. The drawback of this approach
is that mapping has to be performed between the objects.
Data needs to be copied between the backing bean and the
business object.
 There’s no business logic inside the backing bean actions.
The backing bean action simply delegates the user request
to the middle tier. The addItemAction takes the item ID from
the request, then it looks up the CatalogService through the
ServiceLocator and gets the item associated with the item ID.
It calls the addItem method on the Cart business object.
The business logic of how to add an item to the cart is
handled by the Cart business object. Finally, if everything
succeeds, the navigation result of success is returned to the
JSF implementation.

Backing Bean Registration
 To let the JSF bean management facility manage your back-
ing bean, the CartBean must be registered in the JSF configu-
ration resource file faces-managed-beans.xml (see Listing 2).
 The CartBean is set to have a scope of a session, which
means the JSF implementation creates a CartBean instance
if it is referenced inside any JSP page for the first time during
a session. The CartBean instance is kept under the session
scope. This way the user can interact with the stateful shop-
ping cart, add an item, remove an item, update the cart, and
finally check out.

The JSP Page
 The cart.jsp is the page to present the content of a shopping
cart. It contains UI components and wires the components to

the CartBean (see Listing 3).
 The page starts out with the tag library declarations. The JSF
implementation defines two sets of tags. The core tags are in-
dependent of the rendering technology and are defined under
prefix f. The HTML tags generate HTML-specific markup and
are defined under prefix h. All JSF tags should be contained
inside an f:view or f:subview tag.
 h:outputText is used to present a message to the user once
the shopping cart is empty:

<h:outputText value="Your Shopping Cart is Empty"

 styleClass="title" rendered="#{cartBean.numberOfItems <= 0}"/>

 The rendered attribute takes a boolean variable. If the value
is false, the h:outputText will not be rendered. The rendered
attribute can give you the same effect as a JSTL c:if. Since JSF
and JSTL are not integrated well, it’s good practice to try not to
mix them together.
 h:dataTable is used to iterate through the items inside the
shopping cart and present them inside a HTML table. The
value attribute

 value="#{cartBean.cartItemList}"

represents the list data over which h:dataTable iterates. The
name of each individual item is specified through the var attri-
bute. You can control the presentation style of each individual
column through the columnClasses attribute.
 Inside h:dataTable, h:inputText is used to take user input
– the quantity of the current item:

<h:inputText value="#{cartItem.quantity}" size="5"/>

 The attribute value="#{cartItem.quantity}" tells the JSF im-
plementation to link the text field with the quantity property
of the cart item. When the page is displayed, the getQuantity
method is called to obtain the current property value. When
the page is submitted, the setQuantity method is invoked to
set the value that the user enters.
 h:commandButton is used to create the “Update Cart” but-
ton, which allows the user to update the shopping cart. The

 Figure 1 Page-flow diagram

Main

ProductSearch Result

Sign In Register

Item

Cart

Create Order

Order
Confirmation

Account

Edit Account

Public

Private

CategoryCategory List
browse

browse

browse

se
ar

ch

Logged in

Lo
gg

ed
 in

browse

www.SYS-CON.com/JDJ26 November 2004

action attribute action="#{cartBean.updateAction}" contains
a method-binding expression and tells the JSF implementa-
tion to invoke the updateAction method on the CartBean in-
side the session scope. The updateAction returns a navigation
result, which determines the next page to go to.
 The Check Out link is implemented with h:outputLink,
which generates an HTML anchor element. Once the user
clicks the link, it takes the user to the createOrder page.

Navigation
 Navigation is one of the key features provided by JSF.
For this application, all navigation rules are defined inside
the faces-navigation.xml. There are two navigation rules
related to the current use case. Here’s the definition of the
first rule:

<navigation-rule>

 <from-view-id>/cart.jsp</from-view-id>

 <navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/cart.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

 This rule tells the JSF implementation that from the cart.
jsp, if any action finishes successfully and returns success,
the cart.jsp will be refreshed to reflect the current state of
the shopping cart. The second rule is about error handling
and is defined as a global navigation rule. It’s not discussed
here. Please refer to the faces-navigation.xml for detailed
information.

Integration with Tiles
 Tiles is a framework that makes using template layouts
much easier through the use of a simple but effective tag
library. Tiles separates the layout from content, makes your
Web application easier to maintain, and keeps a common
look and feel among all the pages. JSF and Tiles are a powerful
combination.
 JSF does not have built-in Tiles support. Tiles definitions
cannot be referenced directly inside JSF applications. MyPet-
Store uses a workaround to integrate Tiles with JSF success-
fully. Tiles definition is referenced by JSF indirectly through a
separate wrapper JSP file. The drawback of this approach is to
have two JSP pages for each logical view. One is the content
tile and the other is the wrapper JSP page with the Tiles defini-
tion. A tile is used to describe a page region managed by the
Tiles framework. A tile can contain other tiles.
 Here are step-by-step instructions on how to integrate JSF
with Tiles:
• Put struts.jar under your application’s classpath (Tiles is

bundled with Struts1.2).
• Enable Tiles inside web.xml (see Listing 4). (Listings 4–10 can

be downloaded from www.sys-con.com/java/sourcec.cfm.)
• Build the layout template. The layout of MyPetStore is

defined inside layout.jsp (see Listing 5). This template con-
trols the layout of the entire application. Tiles custom tag
<tiles:insert attribute="sider" flush="false"/> tells the Tiles
framework to insert the tile identified by the value of the
specified attribute.

• Write the base Tiles definition. A Tiles definition allows you
to specify the attributes that are used by a layout template.
Tiles supports definition inheritance. You can declare a base
definition and then create other definitions derived from
that base. In MyPetStore, a base Tiles definition is defined
inside the tiles.xml (see Listing 6). The base Tiles definition
uses layout.jsp as the layout template and defines the com-
mon tiles used throughout the application, e.g., header,
footer, etc.

• Write the wrapper JSP page. All the tiles with the real content
are defined inside the Tiles directory. For each logical view,
there’s a wrapper JSP page. Here’s the wrapper JSP page for
cart.jsp:

<%@ taglib uri="http://jakarta.apache.org/struts/tags-tiles"

prefix="tiles" %>

<tiles:insert definition=".mainLayout">

 <tiles:put name="title" value="Shopping Cart Page"/>

 <tiles:put name="body" value="/tiles/cart.jsp"/>

</tiles:insert>

 It tells the Tiles framework to insert the content tile /tiles/
cart.jsp into the body part of the page defined by the base
Tiles definition .mainLayout.

Integration with the Business Logic Tier
 The ServiceLocator pattern and the JSF bean management
facility are used to integrate the JSF-based presentation tier
with the business logic tier. The ServiceLocator abstracts the
logic that looks for services. In this application, ServiceLocator
is defined as an interface and implemented as a JSF managed
bean, ServiceLocatorBean. The ServiceLocatorBean looks up

Feature

 Figure 2 High-level architecture diagram

Presentation Tier

(JavaServer Faces, Tiles) Se
rv

ic
e

Lo
ca

to
r Service

Interface

Business Logic Tier

(Spring)

DAO

Integration Tier

(Hibernate)

 Figure 3 Shopping cart screen

www.SYS-CON.com/JDJ28 November 2004

the services from the Spring application context:

ServletContext context = FacesUtils.getServletContext();

this.appContext =

 WebApplicationContextUtils.getRequiredWebApplicationContext(con

text);

this.catalogService =

 (CatalogService)this.lookupService(CATALOG_SERVICE_BEAN_NAME);

…

 The ServiceLocator is defined as a property inside the Base-
Bean. The JSF bean management facility wires the ServiceLoca-
tor implementation with those managed beans that need to
access the middle tier.

<managed-property>

 <property-name>serviceLocator</property-name>

 <value>#{serviceLocatorBean}</value>

</managed-property>

 IOC is used here.

Middle Tier
 The tasks in this tier consist of defining the business objects
with their mappings, creating the service interfaces with
their implementations, implementing the DAOs (data access
object), and wiring the objects.

The Business Object
 The Cart business object is implemented as a POJO (plain
old Java object) (see Listing 7). It contains the data associated
with a shopping cart; it also contains actions with business

logic, e.g., addItem, getSubTotal, etc.

The Business Service
 The CatalogService interface defines all of the catalog man-
agement–related services:

public interface CatalogService {

 public List getCategoryList() throws MyPetStoreException;

 public Category getCategory(String categoryId)

 throws MyPetStoreException;

 …

}

Spring Configuration
 Listing 8 provides the CatalogService’s Spring configuration
inside applicationContext.xml.
 The Spring declarative transaction management is set
up for the CatalogService. Spring bean factory creates and
manages a CatalogService singleton object. By using Spring
bean factory, the need for customized bean factories is
eliminated.
 The CatalogServiceImpl is the implementation of the
CatalogService, which contains a setter for the CatalogDao.
The CatalogDao is defined as an interface and its default
implementation is the CatalogDaoHibernateImpl. Spring
wires the CatalogServiceImpl with the CatalogDao. Because
we are coding to interfaces, we don’t tightly couple the
implementations. For example, by changing the Spring
applicationContext.xml, we can tie the CatalogServiceImpl
with a different CatalogDao implementation – Catalog-
DaoJDOImpl.

 Figure 4 A sequence diagram of the AddItemToCart use case

ItemJSP CartBean ServiceLocator CatalogService CatalogDaoFacesServletSecurityFilter Cart CartJSPUser

1 request

2 succeed

3 forward

4 submit

5 addItemAction

6 getCatalogService

7 lookup

8 getItem

10 addItem

9 getItem

11 “success”

12 forward

Feature

www.SYS-CON.com/JDJ30 November 2004

Integration with Hibernate
 Listing 9 provides the HibernateSessionFactory’s configu-
ration. CatalogDao uses the HibernateTemplate to integrate
Spring with Hibernate. Here’s the configuration for Hiber-
nateTemplate:

<bean id="hibernateTemplate"

 class="org.springframework.orm.hibernate.HibernateTemplate">

 <property name="sessionFactory">

 <ref bean="sessionFactory"/>

 </property> <property name="jdbcExceptionTranslator">

 <ref bean="jdbcExceptionTranslator"/>

 </property>

</bean>

 Hibernate maps business objects to the relational data-
base using XML configuration files. Item.hbm.xml expresses
the mapping for the Item business object. The configuration
files are in the same directory as the corresponding business
objects. Listing 10 provides the Item.hbm.xml. Hibernate
maintains the relationship between objects. The mapping
definition defines a many-to-one relationship between Item
and Product.
 Finally, CatalogDao is wired with HibernateTemplate by
Spring:

<bean id="catalogDao"

 class="mypetstore.model.dao.hibernate.CatalogDaoHibernateImpl">

 <property name="hibernateTemplate">

 <ref bean="hibernateTemplate"/>

 </property>

</bean>

End-to-End
 Figure 4 demonstrates the end-to-end integration of all the
tiers for AddItemToCart: a sub-use case of the UpdateShop-
pingCart use case.

Technologies and JSF Features Matrix
 The UpdateShoppingCart use case doesn’t cover all the
technologies and advanced JSF features we used in this ap-
plication, e.g., security, pagination, etc. Table 1 can serve as a
reference catalog to help you understand this application.

Configuration and Installation
 You can download the source code for MyPetStore from
www.sys-con.com/java/sourcec.cfm.

The Package Structure
 After unzipping the code, you should see the following
directory structure:

mypetstore

 /bin

 /docs

 /lib

 /src

 /web

 /images

 /tiles

 /WEB-INF

 build.xml

 Table 2 explains each part of the directory structure.

System Requirements
 You’ll need the following tools to build and run the MyPet-
Store application:
• JDK 1.4.2 or later
• Ant
• Tomcat 5.x
• MySQL 4.x

Feature

Table 1 Technologies and JSF features used in MyPetStore application

Business Logic Tier
Integration

Helper Classes

Configuration

Managed beans

Description

Helper classes

Configuration

JSP pages

Description

Chaining bean
definitions

Custom Validator

mypetstore.view.servicelocator.ServiceLocator

faces-managed-beans.xml, applicationContext.xml

mypetstore.view.bean.ServiceLocatorBean
mypetstore.view.bean.BaseBean

pattern and JSF bean management

ServiceLocator
facility are used.

faces-managed-beans.xmlConfiguration

Managed beans mypetstore.view.bean.ServiceLocatorBean
mypetstore.view.bean.BaseBean

Description JSF implementation is an IOC container.
The implementation of the ServiceLocator is
chained with other managed bean definitions.

java.util.regex.Pattern
mypetstore.view.validator.regex.RegexValidator
mypetstore.view.validator.regex.RegexValidatoTag

mypetstore.tld, faces-config.xml

createAccount.jsp

Using the regular expression validator to demonstrate how
to build a validator with custom tag.

Error Message
Customization

Configuration

Helper classes

JSP pages

Description

h:dataTable

Pagination

mypetstore.view.bundle.Messages.properties
faces-config.xml

category.jsp, product.jsp, mylist.jsp.searchResult.jsp

Description JSF implementation is able to retrieve request parameter and
set it as property inside managed bean.

org.springframework.beans.support.PagedListHolder

category.jsp, product.jsp, mylist.jsp, searchResult.jsp

Spring PagedListHolder is used to build the pagination.
The pagination logic is inside BasePaginationBean.

Description Message bundle is defined to customize the JSF build-in
error messages

JSP pages

Initializing managed
bean property from
request parameters

faces-managed-beans.xmlConfiguration

Managed beans mypetstore.view.bean.CategoryPageBean
mypetstore.view.bean.ProductPageBean
mypetstore.view.bean.ItemPageBean
mypetstore.view.bean.SearchPageBean

Managed beans mypetstore.view.bean.BasePaginationBean

Security
Helper classes mypetstore.view.util.SecurityFilter

web.xmlConfiguration

JSP pages signonRedirect.jsp

Description Standard Servlet Filter is used to implement the authentication.
signonRedirect.jsp is used to redirect the user to his original
target URL after sign on.

Tiles Integration
web.xml, tiles.xmlConfiguration

JSP pages layout.jsp, all JSP wrapper pages

Description struts.jar needs to be under the classpath.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���
���

��
��

��
��

���
��

��

�
��

��
��

��

�
��

��
��

�

����������������������������������
������������������

Crystal Reports 10
�����������������

��������
������������������

��������
���������������

��������

Report Creation
Visual report designer for rapid data access and formatting • • •1 •1 • •
Customizable templates for faster, more consistent formatting • • • •
Repository for reuse of common report objects across multiple reports4 • • •
Data Access
PC -based and Microsoft® ODBC/OLE DB for MS Access and SQL Server • • • • • •
Enterprise database servers (ODBC, native) • •1 •1 • •
Custom, user -defined data through JavaBeans™ • • •
Custom, user-defined data through ADO and .NET • • •
Report Integration
Report viewing APIs (.NET and COM SDKs) • • •
Report viewing APIs (Java SDK) • • •
Extensive report viewer options (DHTML, ActiveX, Java Plug - in, and more) • •
APIs for run-time report creation and modification •
Report Parts for embedding report objects in wireless and portal apps • • • •
Report Deployment
Crystal Reports components for report viewing, printing, and exporting:
 a) Java reporting component • • •
 b) .NET reporting component • • •
 c) COM reporting component • •
Full featured report exporting • • •
Report server (Crystal Enterprise Embedded deployment license) •
1 Limited functionality. 2 Bundled with Microsoft® Visual Studio® .NET and Boland® C#Builder™.
3 Bundled with BEA WebLogic Workshop™ and Boland® JBuilder ®. 4 This feature is available on the Crystal Enterprise CD, included in the Crystal Reports 10 package.

We’d like to think that not all
perfect matches are made in heaven.

��
��

��
���

��
��

�
��

��
��

���
��

���
��

���
��

��
��

��
���

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
�

���
��

��
��

��
��

��
��

��
��

���
��

��
�

��
��

��
��

�
���

��
���

��
��

��
��

��
��

��
��

Perfect matches can be made here too. In order to quickly determine which Crystal Reports® best suits
your project requirements, we’ve provided this basic feature chart. Crystal Reports® 10 simplifies the
process of accessing, formatting, and tightly integrating data into Windows and web applications via
an enhanced designer, flexible data connectivity options, and rich Java™, .NET, and COM SDKs.

To learn more about Crystal Reports 10, compare over 150 different features across versions,
or to access technical resources like the Developer Zone and evaluation downloads, visit:
www.businessobjects.com/dev/p7. To ask more specific report project related questions, contact
an account manager directly at 1-888-333-6007.

www.SYS-CON.com/JDJ32 November 2004

Installation Instructions
• Prepare the database. Run bin/mypetstore.sql against

MySQL to build database schema and load seed data. If
you’d like to use another RDBMS, this script may need to be
modified.

• Change the configuration (optional for default MySQL
installation).

 – Find and open web/WEB-INF/applicationContext.xml.
 – Under the definition of the datasource bean, modify

 the JDBC connection properties (URL, username, pass
 word) to match the database you’re using.

 – Save the file.
• Build the Web application by Ant (the default target is build.

war).

• Copy the dist/mypetstore.war to the <tomcat-home>/webapps
directory.

• Start Tomcat.

 For the default Tomcat installation, MyPetStore is accessible
from http://localhost:8080/mypetstore
 Log on to the application using j2ee as the username and
password.

Summary
 In this article I tried to provide a picture of how you can
integrate JSF, Tiles, Spring, and Hibernate in one application.
With minimum theory, you should now be able to start building
such typical Web applications as a pet store. If I sparked your
interest in studying any of these technologies, my mission was
accomplished.

Resources
• JavaServer Faces: http://java.sun.com/j2ee/javaserverfaces
• Tiles (bundled with Struts1.2): http://struts.apache.org
• The Spring Framework: http://springframework.org
• Hibernate: http://hibernate.org
• MySQL: http://mysql.com/
• Tomcat: http://jakarta.apache.org/tomcat/
• Java Pet Store: http://java.sun.com/developer/releases/petstore
• Johnson, R. (2002). Expert One-on-One J2EE Design and

Development (Programmer to Programmer). Wrox.
• Singh, I., et al, (2002). Designing Enterprise Applications with

the J2EE Platform. Addison-Wesley Professional.

Feature

Table 2 MyPetStore application package content

web.xml, tiles.xmlConfiguration

JSP pages layout.jsp, all JSP wrapper pages

Description struts.jar needs to be under the classpath.

Folder or File Content

bin

dist(after build)

docs

lib

src

web

images

tiles

WEB-INF

build.xml

database script

war file

installation instruction and Java docs

library jar files

Java source, resource bundle and Hibernate mapping files

web application files

images

JSP templates

JSF, Spring, Tiles, Custom Tag, and web application configuration files

ant build script

Listing 1
public class CartBean extends BaseBean {
 private Cart cart;

 …
 public String addItemAction() {
 String itemId =
 FacesUtils.getRequestParameter(ITEM_ID_PARAMETER_NAME);
 try {
 Item item =
 this.getServiceLocator().getCatalogService().
 getItem(itemId);
 this.cart.addItem(item);
 } catch(MyPetStoreException me) {
 String msg = "Could not add item to cart ";
 FacesUtils.addErrorMessage(msg + ": Internal Error");
 return NavigationResults.FAILURE;
 }
 return NavigationResults.SUCCESS;
 }

 …
 public Cart getCart() {
 return this.cart;
 }
}

Listing 2
<managed-bean>
 <description>Backing bean for the shopping cart.</description>
 <managed-bean-name>cartBean</managed-bean-name>
 <managed-bean-class>
 mypetstore.view.bean.CartBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>serviceLocator</property-name>
 <value>#{serviceLocatorBean}</value>
 </managed-property>
</managed-bean>

Listing 3
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core" %>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html" %>

<f:subview id="cart">
<h:form id="cartForm">
<h:outputText value="Your Shopping Cart is Empty"
 styleClass="title" rendered="#{cartBean.numberOfItems <=
0}"/>
<h:outputText value="Shopping Cart" styleClass="title"
 rendered="#{cartBean.numberOfItems > 0}"/>
<h:panelGrid columns="1" styleClass="box"
 rendered="#{cartBean.numberOfItems > 0}">
<h:dataTable id="cartTable" value="#{cartBean.cartItemList}"
 var="cartItem" styleClass="standard"
 columnClasses="cartColumn1, cartColumn2, cartColumn3, cartCol-
umn4">
 <h:column>
 <h:outputLink value="item.jsf?itemId=#{cartItem.item.
itemId}">
 <h:outputText value="#{cartItem.item.attribute1}" />
 <h:outputText value="#{cartItem.item.productName}"/>
 </h:outputLink>
 </h:column>

 …
 <h:column>
 <h:inputText value="#{cartItem.quantity}" size="5"/>
 </h:column>

 …
</h:dataTable>

…
 <h:commandButton value="Update Cart"
 action="#{cartBean.updateAction}"/>

…
</h:panelGrid>
<h:panelGrid styleClass="standard" columnClasses="rightAlign"
rendered="#{cartBean.numberOfItems > 0}">
 <h:outputLink value="createOrder.jsf">
 <h:outputText value="Check Out" />
 </h:outputLink>
</h:panelGrid>
</h:form>
</f:subview>

Co
py

ri
gh

t
©

 2
00

4
Ca

no
o

En
gi

ne
er

in
g

AG
. A

ll
R

ig
ht

s
Re

se
rv

ed
.

Ja
va

 a
nd

 a
ll

Ja
va

-b
as

ed
 t

ra
de

m
ar

ks
 a

re
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

Rich Thin Clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

D o w n l o a d y o u r f r e e t r i a l t o d a y !

� S e r v e r- s i d e p r o g r a m m i n g m o d e l :
develop scalable web applications for thousands of users
as simply as stand-alone Swing applications.

� S u p e r i o r s e c u r i t y :
no application code is executed on the client, nothing
is stored in a browser cache.

� A p p l i c a t i o n d e p l o y m e n t o n s e r v e r :
a lean Java presentation engine on the client serves
any number of applications.

� P u r e J a v a l i b r a r y :
use your favorite IDE and get add-on tools for visual editing,
client/server simulation, and load/performance testing.

UltraLightClient offers
a server-side API to Swing,
providing rich GUIs
for J2EE applications.

www.SYS-CON.com/JDJ34 November 2004

am pleased to announce that the
J2SE 5.0 release has gone final and
is ready for you to download! The
first set of downloads for Windows,

Solaris, and Linux are available from
the http://java.sun.com/j2se/5.0 Web
site. This even includes a 64-bit AMD64
port on Linux for server-side applica-
tions. Other OS support and tools will
follow from our partners, so please let
them know that you are waiting for a
particular port.
 I was fortunate to be able to fly to
New York for the J2SE 5.0 launch and
give a short presentation, called “5
reasons to move to 5,” to the New York
SIG. I checked the flight deals on Orbitz
(which runs J2SE on Linux), sent my
expense request using a Java Web Start-
enabled expense tool, and I was ready
to go.
 While I was waiting for the plane
to take off, I paged through the
in-flight magazine and came
across the section describ-
ing the type of aircraft I
was currently seated on. It
proudly noted that the en-
gine for this 757 flight was
a Rolls Royce. I’ve never
actually been in a Rolls
Royce car, which is now
part of the BMW group;
however, the name
Rolls Royce for me is a
byline for reliability and
performance. I think
their messaging worked;
I knew they wouldn’t
really put any old engine
on a plane but I felt
more assured that
a Rolls Royce
engine would have

exceeded any certification test they
threw at it and was more than capable
of getting me to my destination.
 Fast forward to the New York SIG. As
Yakov writes in his editorial this month,
Java is used heavily on Wall Street. I
knew Java was behind many of the
popular consumer Web sites but the
Java platform is the Rolls Royce engine
for Wall Street and provides not just the
horsepower, but the integration solu-
tion too. The good news is that the J2SE
5.0 release is the most rock-solid, stable
platform we have ever tested.
 The testing criteria is raised for each
release and our testing experts and TCK
specification test writers have done
an impressive job. At the same time
we have added more features, made
it faster to start up and also smaller to
download. That may be a pleasant sur-
prise for many of you – improving start
up time was the number one request

I received and we made good on
that promise. There were several
contributing factors but the lion’s
share of that improvement came
from the new Class Data Sharing
technology.
 With the subsequent volume
in press activity, I’ve received
many e-mails from developers
who perhaps haven’t looked at
Java for a while and want to
know what the advantages of
5.0 are and should they switch?
If you count yourself as one of

those developers and have
a question or comment,

send me an e-mail, I will
be happy to help.

 To continue
with the Tiger
theme, we have

two great J2SE 5.0 articles this month.
The first is a comprehensive look at the
new enumerated type keyword, devel-
oped through JSR 201. The second is
an article describing the monitoring
and management framework as devel-
oped through JSRs 163 and 174. This
is just the start of some great J2SE 5.0
content we have lined up, so make sure
you pick up next month’s magazine
too!
 To close, I just wanted to share
another new 5.0 feature with you.
The feature in question is the new
StringBuilder class, also known as the
unsynchronized StringBuffer. At first
glance you may feel that synchroniza-
tion generally means slower and there-
fore you should retrofit this new API in
your codebase to see dramatic speed
improvements. Hold on though; if you
have only a single thread accessing
your StringBuffer in the first place (the
conditions that StringBuilder requires),
the monitor lock itself is fairly cheap.
Monitors only start to get expensive
when more than one thread needs ac-
cess to that protected code block. The
first thread just tests and sets a bit and
proceeds. It’s only if another thread
passes through that same piece of code
at the same time that things change.
The next thread detects the bit is set
and creates a monitor queue to hold
any other threads that need to wait.
This is the more expensive operation
and is called monitor inflation. In my
own tests with a single thread that nev-
er required monitor inflation I needed
to run at least 10,000 StringBuffer
operations to see a savings. As in all
performance tweaks, I would recom-
mend running your own benchmarks
to see what savings you can achieve.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

J2SE 5.0
Ready for Business

I

A co-editor of JDJ since

June 2004, Calvin Austin

is the J2SE 5.0 Specification

Lead at Sun Microsystems.

He has been with Java

Software since 1996 and

is the Specification Lead

for JSR-176, which defines

the J2SE 5.0 (“Tiger”)

release contents.

calvin.austin@sys-con.com

The Java platform is the Rolls Royce engine for Wall Street and
provides not just the horsepower, but the integration solution too”“

www.SYS-CON.com/JDJ36 November 2004

ava’s implementation of Remote
Method Invocation (RMI) is easy to
use and powerful. Java makes setting
up an RMI server an almost trivial
task because the JVM handles com-

plex tasks such as networking and object
serialization. Once running, connecting
client applications to the RMI server is
also a breeze.
 There are numerous examples and
how-to articles for client-to-server com-
munication (http://java.sun.com/de-
veloper/onlineTraining/rmi), but what
about the other way? Is it possible for an
RMI server to actively communicate with
all the clients that are connected to it
without the client initiating the conver-
sation? In other words, is distributed
notification possible? The purpose of
this article is to demonstrate that yes, it is
possible. (The source code for this article
can be downloaded from www.sys-con.
com/jdj/sourcec.cfm.)
 RMI applications are driven by the
need to have centrally located business
logic used by multiple clients at the
same time. This presents a number of
problems, such as clients not knowing
what other clients are doing. A simple
example that immediately demonstrates
this problem is caching data on the cli-
ent side for fast reuse. When one client
updates information, all the other clients
are now working with old data.
 The typical – and not the best – solu-
tion for this problem is to have each
client poll the RMI server for updates on
a regular basis. First, constant polling
puts unnecessary strain on the RMI
server because it’s forced to handle ad-
ditional network traffic. Second, there
will be a period of time when the client is
working with old data. In the J2EE world,
Java Messaging Service (JMS) solves this
problem the best. Assuming all data
updates are done at a central location, a
JMS message can be easily sent to all reg-
istered clients when an update occurs.
When a client receives the message, the
cache can be refreshed.

 An alternative solution is to keep plain
RMI and follow the event notification
model similar to AWT/Swing. In those
models, an object implements a simple
listener interface and is then added to
an appropriate event notification list.
When that event occurs, every object in
the list becomes notified of the event. The
object takes whatever action necessary
in response to the event. Such a model
obviously is a better solution than polling,
and solves the problems that polling has
– there is no unnecessary network traffic
and clients are notified instantly when a
change in the data has occurred.
 Applying this model to RMI is not
trivial. Consider an RMI-based time
server as an example, where client ap-
plications register with an RMI server.
Every second the RMI server fires an
event to inform the clients of the new
time. To successfully do this, first define
a remote interface named TimeServices.

import java.rmi.*;

public interface TimeServices extends

Remote

{

 public void addTimeMonitor(TimeMonitor

 tm)

 throws RemoteException;

}

 The TimeServices interface declares
the methods used for client-to-server
communication (see Figure 1).
 The Remote interface has one meth-
od, addTimeMonitor (TimeMonitor),
which is used by RMI client applications
to register themselves with the RMI serv-
er. This is analogous to the setActionLis-
tener() methods in Swing only instead
of implementing the ActionListener
interface, an object that implements the
TimeMonitor interface is needed. Just
as the ActionListener interface serves to
link an event with the application code
that processes the event, the TimeMoni-
tor Interface serves as a way for the RMI
Server to talk back to its clients.

import java.rmi.*;

import java.util.Date;

public interface TimeMonitor extends Remote

{

 public void setTime(Date d)

 throws RemoteException;

}

 Because of this, TimeMonitor is a
remote interface that allows server-to-
client communication (see Figure 2).
 Implementing the TimeMonitor inter-
face becomes a challenge, because it’s not
possible for every client to create its own
implementation and use that implemen-
tation to register with the RMI server.
When the client tries to register with the
server by calling the addTimeMonitor()
method, the TimeMonitor parameter se-
rializes to a byte stream and is transmitted
over the network to the server. The server
then needs to know how to deserialize
the stream and reconstitute the object.
Even though syntactically the TimeMoni-
tor interface is needed to compile, when
the server is actually running it needs
the implementation of the TimeMoni-
tor interface in the CLASSPATH in order
to deserialize the TimeMonitor objects
correctly. If the implementation was not
in the CLASSPATH, a ClassNotFoundEx-
ception is thrown when the RMI server
attempts to deserialize the stream.
 To get around this problem, the client
must use an implementation of Time-
Monitor that the RMI server provides.

Event Notification

by Michael J. Remijan

Distributed Notification
with Java RMI

J

Michael J. Remijan is a

research programmer at

the National Center

for Supercomputing

Applications (NCSA). His

chief responsibilities include

data mining and access to

terabyte-sized astronomy data

sets. Michael received a BS in

mathematics and computer

science from the University

of Illinois and is currently

working on an MBA in

technology management.

mjremijan@yahoo.com

Server-to-client communication

 Figure 2 Server-to-client communication

RMI Server
Client

TimeMonitor

 Figure 1 Client-to-server communication

RMI Server
Client

TimeServices

www.SYS-CON.com/JDJ38 November 2004

Event Notification

Assume this implementation is a class
named ServerClock (see Listing 1). Since
ServerClock implements the TimeMonitor
interface, it’s easy to have new instances
of this object register itself with the RMI
server. The constructor of the ServerClock
class can do just this. Once registered,
communication can go back and forth
between the client and server (see Figure
3).
 The client would create an instance
of this class by supplying the name and
port number of the RMI server.

ServerClock serverClock = new

ServerClock(serverName, port);

 The ServerClock constructor performs
two critical operations. First, it makes this
method call:

UnicastRemoteObject.exportObject(this);

 According to the J2SE documentation,
this method call dynamically “exports the
remote object to make it available to re-
ceive incoming calls using an anonymous
port.” Making this method call is the key
that allows the server to communicate with
all the various clients without requiring
stub classes from the client, or knowing the
names and ports of client machines.
 Second, the constructor contacts the
RMI server and registers the object by call-

ing the addTimeMonitor() method:

timeServices.addTimeMonitor(this);

 This doesn’t result in a ClassNotFound-
Exception because the keyword “this”
refers to an instance of the ServerClock
object that the RMI server provided.
 Now the ServerClock class needs to
implement the setTime(Date) method of
the TimeMonitor class:

 /**

 * TimeMonitor interface method

 */

 public void setTime(Date d)

 {

 System.out.println(“The new time

 is: ” + d);

 }

 This implementation of setTime
(Date d) will technically work, but the
RMI client will never know that the RMI
server called this method because all the
method does is print the Date object to
standard out. The RMI client needs to be
notified by the ServerClock whenever the
setTime(Date d) method is called. A simple
solution is for the RMI server to define
another, nonremote interface Seconds-
Listener:

import java.util.Date;

public interface SecondsListener

{

 public void tick(Date d);

}

then add a method to ServerClock that
stores implementations of SecondsLis-
tener in a vector.

 /**

 * add listener to list

 */

 public void addSecondsListener(Seconds

 Listener sl) {

 synchronized(listeners) {

 if (!listeners.contains(sl)) {

 listeners.add(sl);

 }

 listeners.notifyAll();

 }

 }

 Finally, ServerClock’s implementa-
tion of the setTime(Date d) method is
changed to loop over the vector.

 /**

 * TimeMonitor interface method

 */

 public void setTime(Date d)

 {

 synchronized(listeners) {

 for (

 Iterator itr=listeners.

 iterator();

 itr.hasNext();

 ((SecondsListener)itr.

 next()).tick(d)

) {}

 listeners.notifyAll();

 }

 }

 With these additions in place, the client
can create as many listener classes as
are needed and register the classes with
ServerClock:

ServerClock serverClock = new

ServerClock(serverName, port);

serverClock.addSecondsListener(new

ListenerA());

serverClock.addSecondsListener(new

ListenerB());

serverClock.addSecondsListener(new

ListenerC());

…

 Since the SecondsListener implemen-
tations exist on the client, there is no
problem with ClassCastExceptions.

Summary
 This article successfully shows the event
notification model applied to RMI so an
RMI server can notify registered clients of
events as easily as a JButton notifies its Ac-
tionListeners when the button is pushed.
 The RMI server is the place where
events are generated and fired. A remote
interface (TimeServices) allows an RMI
server–supplied object (ServerClock)
to add itself to an event notification list
on the server. Another remote interface
(TimeMonitor) allows the server to
communicate back with the client when
the event occurs. The server-supplied
object (ServerClock) allows the client to
add an arbitrary number of local objects
implementing a nonremote, server-sup-
plied interface (SecondsListener). When
the RMI server fires an event (TimeMoni-
tor.setTime(Date)), the server-supplied
object (ServerClock) loops over its list of
registered listeners and passes the event
along.

 Figure 3 Two-way communication between client and server

RMI Server
Client

TimeServicesServerClock

Listing 1
public class ServerClock implements TimeMonitor
{
 private Vector listeners;
 private String hostName;
 private int port;
 /**
 * constructor
 */
 public ServerClock(String hostNameVal, int portVal)
 throws Exception
 {
 hostName = hostNameVal;
 port = portVal;
 UnicastRemoteObject.exportObject(this);

 String serverName = "rmi://" + hostName + ":" +
port + "/TimeServices" ;
 TimeServices timeServices = null;
 try {
 timeServices = (TimeServices)Naming.
lookup(serverName);
 }
 catch (Exception e) {
 e.printStackTrace();
 throw e;
 }
 timeServices.addTimeMonitor(this);
 }

Based upon trusted software components from the
Apache Software Foundation™, Gluecode JOE™
consolidates your application needs into a single
Java-certified platform.

Enterprise-Class Open Source™ Has Arrived

Integrated, Certified & Supported
Java™ Application Platform

Download Gluecode JOE
today at

www.gluecode.com.

©2004 Gluecode Software, Inc. All rights reserved. Gluecode™, the Gluecode logo and Gluecode JOE™ are trademarks or registered trademarks of Gluecode Software.
Other brand and/or product names are the trademarks or registered trademarks of their respective companies.

We Put the Pieces
 Together For You . . .

GLUECODE

� �
TM

www.SYS-CON.com/JDJ40 November 2004

 Your application has fi nally been tested and deployed

in a production environment. However, the IT operators

are complaining that the application is consuming more

system resources than originally expected. The problem

being described by the IT operators cannot be repeated

in the development environment. To establish the cause of

these problems, it’s important to get enough information

about the runtime environment, more specifi cally what

is going on inside the Java Virtual Machine (JVM).

efore J2SE 5.0, the information available from
the JVM was at best extremely limited. JSR 174
has added management and monitoring APIs
in J2SE 5.0 that expose valuable JVM information.
The exposed information ranges from JVM health

indicators like memory and threads to class loading and
garbage collection information. This article provides an
introduction to manageability and describes how the mon-
itoring and management APIs can be used to externally
manage Java applications as well as build manageability
in applications.

Introduction to Manageability
 Manageability is defi ned as the capability that allows an
application to be managed and controlled. Manageable
applications provide mechanisms by which it is possible to
probe, measure, track, and control it (see Figure 1). Typi-
cally these actions are:
• Monitoring: To capture runtime information from the

application
• Tracking: To observe aspects of an application over a

period of time
• Control: To alter the behavior of a runtime component

 A variety of technologies are available to manage ap-
plications, beginning from basic logs and SNMP to newer

standards like Java Management Extensions (JMX) and Web
Services Distributed Management (WSDM). Java Manage-
ment Extensions allows applications to be managed by
management software by providing an abstraction layer
between the application and the management software.
WSDM is a relatively new management protocol that uses
Web services technology (WSDL/SOAP/UDDI) to manage
distributed resources. WSDM is platform agnostic and can
manage any resource (applications, Web services and their
end points) that can be exposed as a Web service.
 This article focuses on JMX as the technology to manage
applications. The new monitoring and management APIs
use JMX and reside in the java.lang.management package.
The APIs expose data in areas like memory, thread, runtime,
operating system, garbage collection, etc. JMX can be used
to expose coarse business–level information to fi ne-grained
information about specifi c classes and objects. The informa-
tion exposed by JMX can be consumed via system manage-
ment software like HP Openview, IBM Tivoli, or simpler tools
like jconsole.

Basics of JMX
 The JMX specifi cation defi nes an API and architecture that
provides a standard mechanism to management-enable Java
applications. The JMX architecture (see Figure 2) has three
layers:
• Instrumentation
• Agent
• Distributed

Instrumentation Layer
 The instrumentation layer consists of management
beans (MBeans) and managed resources that are instru-
mented with MBeans. This layer is responsible for encap-
sulating management resources with an interface similar
to JavaBeans. Management resources are attributes of an
application that will help in determining the state of the
application. This includes system-level information (like
the number of threads executing), business logic–related
information (like the numbers of orders being processed in
shopping carts), and service-level information (like uptime
and response time). The JMX specifi cation defi nes four
types of MBeans: Standard, Dynamic, Open, and Model
MBean.

Satadip Dutta is a software

architect at Hewlett-Packard

(http://devresource.hp.com)

and has been programming

in Java since 1997. He is a

committer for the XMLBeans

project (http://xml.apache.

org/xmlbeans). His areas of

interests include distributed

software architecture, Web

services, and user interface

design. Satadip holds an MS

in computer science from

Virginia Tech.

sdutta@vt.edu

by Satadip Dutta

B

Feature

BUILDING MANAGEABILITY
Using the management and monitoring APIs to build application manageability

41November 2004www.SYS-CON.com/JDJ

Agent Layer
 The agent layer defi nes a JMX agent, which is a
management entity that runs on a JVM. The agent
acts as the liaison between the MBeans and the
management application. A JMX agent is com-
posed of an MBeans server, a set of MBeans repre-
senting managed resources, a minimum number
of agent services implemented as MBeans, and
typically at least one protocol adaptor or connector.
 The MBean server is the keystone of the JMX
architecture and the central registry for MBeans. All
management operations on MBeans are brokered
through the MBean server. The MBean server,
MBeans, and adapters make use of the generic
functionality that is available as services. Additional
services can be dynamically added by the applica-
tion or the management system to extend the
functionality of a JMX agent. Some of the services
included are monitoring, timer, relation, and
dynamic class loading.

Distributed Layer
 The distributed layer typically contains at least
one protocol adapter or connector. The adapt-
ers and connectors make the agent accessible
remotely. Adapters provide a view of the JMX agent
through a protocol like HTTP or SNMP. Connec-
tors, on the other hand, are used to connect the
JMX Agent with a remote JMX-compliant manage-
ment application using a distributed technology
like RMI. The distributed layer also has tools that
expose the management view of a JMX agent and
the MBeans via another protocol like SNMP, and
tools that interact with the JMX agent and MBeans
via a connector for distributed applications. This
layer is responsible for providing connection
services, security, and consolidated management
information from disparate JMX agents. The
adapter tools interact with the MBeanServer to
generate artifacts that are required by a particular
protocol. For example, MOF fi les may be created
by a Web Based Enterprise Management (WBEM)
adapter tool.

Using the Monitoring and Management APIs
 The monitoring and management APIs use JMX
as the underlying mechanism to expose the JVM in-
formation. The use of JMX allows the information to
be available locally and remotely to applications that

support JMX. The performance impact of extracting
the JVM information is extremely low. The informa-
tion exposed by new APIs can be used to aid in:
• External monitoring and management: Allows

external entities like management software,
system administrators, IT operators, support
engineers, and developers to monitor the JVM
and Java applications.

• Internal monitoring and management: Allows
the developers to add logic to self-monitor and
manage the JVM to make the applications more
manageable and robust.

External Monitoring and Management
 From the perspective of IT operators, the top
two monitoring and tracking aspects for Java
applications are memory consumption and
CPU usage. Table 1 outlines the management
interfaces that are available to monitor and track
memory and CPU consumption.
 The JMX agent available on the JVM is disabled
by default. To enable out-of-the box local JMX
monitoring, the application needs to be started
with the following arguments.

$JAVA_HOME/bin/java -Dcom.sun.management.jmxremote

ApplicationName

 This will start the JMX agent and allow the ap-
plication to be monitored from the local machine
using an application such as jconsole.
 To enable out-of-the-box remote monitoring
without SSL and password authentication the fol-
lowing command line can be used.

$JAVA_HOME/bin/java -Dcom.sun.management.jmxremote.

port=1097

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

ApplicationName

 However, in most realistic situations the con-
nections would be enabled with SSL and password
authentication. The following command line can
be used to start the application on a specifi c port.

$JAVA_HOME/bin/java -Dcom.sun.management.jmxremote.

port=1097

ApplicationName

BUILDING MANAGEABILITY

Figure 1 Application manageability

ControlMonitor Track

Managed Resource

Management Interfaces

Select attributes
to track

Assess
management actions Issue actions

to alter
runtime
behavior

Extract
Management

Attributes

Using the management and monitoring APIs to build application manageability

www.SYS-CON.com/JDJ42 November 2004

 Apart from the port number, other configurations need to be
set via property files. The JRE comes with property files that are
located in $JRE/lib/management/. These files set the various
properties required to set up a secure connection when con-
necting to the JVM. Table 2 outlines the various files required to
enable secure out-of-the-box remote management.

Connecting to the MXBean Interface
 To begin the process of monitoring and tracking, the external
entity needs to make a connection to access the MXBean inter-
face. This connection can be made via any supported adapter
tool like the SNMP. However, the examples here will be more
focused on implementations that use Java. There are two ways to
connect: via a proxy or making a connection to the MBeanServer.
 A connection can be made by constructing an MXBean proxy
instance that forwards the method calls to an MBeanServer (as
shown in Listing 1).

 While the mechanism described in Listing 1 works by getting
direct access to an MXBean interface, it’s also possible to go through
the MBeanServer to get indirect access to the MXBean interface
(see Listing 2).
 The advantage of connecting through the MBeanServer is that it
allows the management application to discover all the MBeans that
are registered. This allows the management application to discover
a richer set of information in a more dynamic manner. While con-
necting directly to a specific MBean is simpler, it is more suited to
scenarios where the MBeans to be accessed are known beforehand.
 After a connection has been established, memory usage for
deployed applications can be monitored and tracked by using a
polling-based or event-driven mechanism. The JMX architecture
supports both of these mechanisms and, depending on the use
case, either the polling or the event notification mechanism can be
used.
 The memory usage can be polled regularly using the getUsage()
method. To use the event notification–based mechanism to moni-
tor the memory, the usage threshold can be set using

memoryPool.setUsageThreshold(MEMORY_LIMIT);

where MEMORY_LIMIT is the peak memory consumption value
in bytes.
 Setting the usage threshold will generate events of MemoryNoti-
ficationInfo when the memory usage exceeds the threshold. When
these events are received, additional actions can be taken by IT
operators. IT can get detailed information about the state of the
application during the time when the application is not behaving
properly and this can help developers find the root cause of the
problem.
 Unusual CPU consumption is one of the indicators that some of
the threads in a Java application may not be behaving as expected.
The thread-related information available from the ThreadMXBean
interface can help provide insights into the underlying problem.
The interface not only provides mechanisms to see the number of
threads executing, but also provides methods for getting detailed
information about each of the threads. The information can indi-
cate the threads that are executing for periods of time that are out
of the normal bounds or the threads that are deadlocked. The code
in Listing 3 finds if there are any deadlocked threads and prints the
information about the blocked and the blocking threads. (Listings
3–7 can be downloaded from www.sys-con.com/java/sourcec.
cfm.)
 The ThreadInfo class also provides methods to get valuable
thread-related information that includes the state of the thread,
elapsed time in blocked state, and the stack trace.
 One of the important aspects of manageability is the ability to
add a degree of control after a certain condition is met. Although
the current API doesn’t provide controls to tune the JVM, it does
provide a mechanism to get additional information when abnor-
mal runtime conditions are observed. This control is provided
using the LoggingMXBean interface (see Listing 4). The logging
interface allows you to retrieve the various loggers and set the log
levels dynamically. This is an extremely important feature because
it allows external monitoring entities to acquire detailed runtime
information when the application doesn’t behave as expected or
consumes excessive system resources. It’s also important to note
that to exercise any kind of runtime control, the management ap-
plication needs to connect using the authentication for control role.

Feature

 Table 2 Security-related property files for out-of-the-box remote monitoring

File Name Description
jmxremote.access The access control file defines the various roles available to access the managed
 beans. The default roles are the monitor and the control roles. The monitor role gives
 read-only access to the managed beans. The control role gives read-write access to
 the managed beans. Other roles can also be defined in this file.

jmxremote.password The password file contains all the passwords for each of the roles defined in
 the access control file. The default installation comes with a template file
 (jmxremote.password.template) that can be readily modified by changing the
 passwords for the monitor and control roles. The passwords are stored in clear
 text and it’s important to ensure that the file has the correct file permissions.
 The password file can also be located in another location and be specified using
 the following option at the command line
 com.sun.management.jmxremote.password.file =<filename>

management.properties The management properties define the system properties for SNMP and RMI
 access. SSL can be enabled by setting com.sun.management.jmx-
 remote.ssl=true. Password authentication can be enabled by setting
 com.sun.management.jmxremote.authenticate =true.

 Table 1 Default management interfaces for memory consumption and CPU usage

Memory Consumption MemoryManagementMXBean
 MemoryPoolMXBean
 MemoryMXBean
 RuntimeMXBean
 GarbageCollectorMXBean

CPU Usage ThreadMXBean
 OperatingSystemMXBean
 RuntimeMXBean

 Figure 2 JMX Architecture

Timer Service Monitoring Service

Dynamic Class
Loading Service Relationship Service

MBeanServer

MBean MBeanMBean

Ag
en

t L
ay

er

Instrumentation
Layer

Manageable Resource

JM
X

Ag
en

t

Distributed
Layer

Remote
Adapter

Remote
Controller

43November 2004www.SYS-CON.com/JDJ

 The new APIs allow the JVM to be managed out-of-the-box by exposing
information critical to the health of a JVM. By leveraging JMX as the under-
lying architecture, it’s now possible to externally monitor, track,
and control a Java application and this makes Java applications more
manageable.

Internal Monitoring and Management
 The monitoring and management APIs can also help create adaptive
business logic. Until now it has been difficult to write application logic that
takes into account the effects of the runtime environment. Without using the
runtime information, it’s easy for the application to be in situations in which
there are not enough system resources (like memory) available. To make the
application more robust, the applications can:
• Expose management information that can be used by IT operators via

management software to aid in root cause analysis.
• Take compensatory actions to prevent the application from running into

an unrecoverable state.

 Although getting information about the JVM can provide insight into the
state of the JVM, data exposed at the application level can be equally use-
ful. A developer may choose to expose information at the business-logic
level like number of orders pending, the time taken to service requests, and
so on.
 In this article I look into exposing more granular information at an
object level that deals more closely with application logic. For example, col-
lection classes like hashtables and vectors can be easily misused and result
in memory leaks. Some of the newer data structures like PriorityBlock-
ingQueue (java.util.concurrent) can also cause OutofMemoryError if not
used properly. Based on application logic, information contained in critical
classes and utilities like object pools can be exposed via MBeans.

Exposing Management Information
 To expose information via MBeans the first step is to create a manage-
ment interface.

public interface ObjectPoolMBean {

 public Integer availableObjects();

 public Integer size();

 public String poolName();

}

 The ObjectPool class will contain the implementation and the logic
that will return the attributes exposed by the management interface (see
Listing 5).
 When constructing an MBean it’s important to ensure that:
• The MBean is a public nonabstract class.
• The MBean has at least one public constructor.
• Standard MBeans implement their own management interface and

DynamicMBeans implement the javax.management.DynamicMBean
interface.

 Once the MBean has been constructed, it needs to be registered with the
MBeanServer so that it can be accessed via JMX calls. The following code
demonstrates how an MBean can be registered with the default MBean-
Server (the PlatformMBeanServer).

//Get MBeanServer

MBeanServer platformMBeanserver=ManagementFactory.getPlatformMBeanServer();

//Register the ObjectPool MBean

ObjectName poolName =

new ObjectName(“com.foo:id=ObjectPool”);

platformMBeanserver.registerMBean

 (new ObjectPool(),poolName);

 By having the relevant sections of the code exposed as MBeans, it’s possible
to extract the information about the state of the critical parts of the applica-
tion. When the application misbehaves, the information exposed via the
application-specific MBeans can help narrow the root cause of the problem.

Taking Compensatory Actions
 The exposed management information from an application can alert IT
operators about impending problems. The application can also use the JVM
information to throttle the application and prevent it from getting into an
unrecoverable state. By throttling the application, the garbage collector may
get a chance to run and thereby prevent memory or thread-related problems.
The example below uses the usage threshold notification mechanism to
demonstrate how self-managing logic can be used. In this example, when-
ever the memory threshold–exceeded notification is received, the application
saves the requests so that they can be processed later.
 The notification listener (javax.management.NotificationListener) can be
extended to detect low memory conditions. The memory threshold notifica-
tions are only generated when the memory-usage limits are exceeded. The
memory limits are set for the memory pool using setUsageThreshold(). It’s
also important to note that when a low memory situation continues to occur,
additional notifications will not be generated. The next event will be gener-
ated only when the memory usage falls below the threshold and then exceeds
it again.

Google, the world leader in large-scale information retrieval, is
looking for experienced software engineers with superb design
and implementation skills and considerable depth and breadth in
the areas of high-performance distributed systems, operating
systems, data mining, information retrieval, machine learning,
and/or related areas. If you have a proven track record based on
cutting-edge research and/or large-scale systems development
in these areas, we have plenty of challenging projects for you in
Mountain View, Santa Monica and New York.

Are you excited about the idea of writing software to process a
significant fraction of the world's information in order to make it
easily accessible to a significant fraction of the world's population,
using one of the world's largest Linux clusters? If so, see
http://www.google.com/cacm. EOE.

www.SYS-CON.com/JDJ44 November 2004

 Once the LowMemoryListener has been created (see Listing 6),
the listener needs to be registered with the MemoryMXBean. The
ManagementFactory is a factory class that provides static methods
to get the standard management interfaces for JVM information.
The factory can be used to get Memory beans to register the Low-
MemoryListener.

MemoryMXBean membean = ManagementFactory.getMemoryMXBean();

NotificationEmitter emitter

 = (NotificationEmitter) membean;

LowMemoryListener listener = new MyListener();

emitter.addNotificationListener(listener, null, null);

 In this example, the saved requests need to be processed at a
later time when memory usage is back to the normal level. A poll-
ing-based mechanism can be set up to retrieve saved requests and
restore the request queue one request at a time (see Listing 7). After
the saved request queue is empty, new requests can be accepted.
 The example uses the new APIs to build manageability by
making the application aware of runtime resource consumption.
The application uses a polling-based mechanism to monitor the
application state and ensure that all saved requests are pro-
cessed before new requests are accepted. The memory-exceeded
notification is used to track and control application behavior to
prevent it from going into an unrecoverable state.

Guidelines for Exposing Management Data and
Taking Adaptive Action
 The new APIs enable any application to build manageability by
exposing management information. It’s important to expose the
right type of data to realize the benefits of application manageabil-
ity. Some of the factors to consider when exposing the management
data are:
• The granularity of the data: The data can be exposed either at

an object level or by collating data from multiple objects.
• Usefulness and relevancy of the exposed data: The information

exposed via managed beans has to be helpful to the IT opera-
tors from the manageability perspective. A good rule of thumb is
that if the information is helpful for debugging and doing a root
cause analysis of a problem, it’s a worthwhile attribute to expose.

 In the example, information about the saved request queue and
the JVM memory usage are examples of information that would
be helpful to IT operators to predict impending problems in the
application.
 When adding logic for adaptive business logic for self-manage-
ment, some of the functional decision points to keep in mind are:
• Use runtime information to drive application logic: This will

allow the application to slow down graciously and thereby allow
IT operators to take appropriate actions without incurring appli-
cation downtime.

• Use standard Java logging mechanism: This will allow IT opera-
tors to retrieve additional diagnostic information via a logging
management interface when the application doesn’t behave as
expected.

Conclusion
 The introduction of the new monitoring and manageability API
makes the job of building manageability in applications a lot easier.
The JMX support in J2SE 5.0 makes it extremely easy to enable

both external and internal monitoring and management. The
JMX architecture enables application and JVM attributes to be
monitored, tracked, and controlled. Since the JVM can be
management-enabled out-of-the box, even existing applications
running on older JVMs can be migrated to J2SE 5.0, instantly
reaping the benefits of external manageability.
 IT operators can now provide detailed information to devel-
opers about the application state when the application doesn’t
behave normally. The JVM information can help developers write
self-managing logic that uses the runtime resource consumption
characteristics. The new monitoring and manageability API helps
developers identify problems quickly, IT operators get detailed in-
formation about Java applications and, most important, increases
application uptime significantly.

Further Information
• Building manageability into software applications: http://

devresource.hp.com/drc/technical_papers/managability-
Tech/index.jsp

• JMX Documentation: http://java.sun.com/products/
JavaManagement/

• JMX Tutorial: http://java.sun.com/j2se/1.5.0/docs/guide/
jmx/tutorial/tutorialTOC.html

• WSDM: http://devresource.hp.com/drc/slide_presentations/
wsdm/index.jsp

• J2SE 5.0 API: http://java.sun.com/j2se/1.5.0/docs/api/index.
html

• JVM out-of-the-box monitoring: http://java.sun.com/
j2se/1.5.0/docs/guide/management/out-of-the-box.html

• Jconsole: http://java.sun.com/j2se/1.5.0/docs/tooldocs/
share/jconsole.html

Feature

Listing 1: Connecting using MXBean Proxy
 MBeanServerConnection mBeanServerConnection =
null;
try{

mBeanServerConnection =
 JMXConnectorFactory.connect(
 new JMXServiceURL(jmxServiceURL),null)
 .getMBeanServerConnection();

MemoryMXBean memoryMXBean =
 ManagementFactory.newPlatformMXBeanProxy(
 mBeanServerConnection,
 ManagementFactory.MEMORY_
MXBEAN_NAME,
 MemoryMXBean.class);

} catch (Exception e) {
 System.err.println("Failed to Connect with "
 + "JMXServiceURL '" + jmxServiceURL
+
 "': " + e);

}

Listing 2: Connecting directly to the MBeanServer
// get an instance of the logging MXBean
ObjectInstance loggingInstance =
 mBeanServerConnection.getObjectInstance(
 new ObjectName("java.util.logging:
type=Logging"));

// Use the query mechanism to get all the MXBeans that
are
//part of the java.lang domain.
Set mBeanSet =
 mBeanServerConnection.queryMBeans(
 new ObjectName("java.lang:*"), null);

www.SYS-CON.com/JDJ46 November 2004

o enumerate means to itemize or
to list. In the world of program-
ming, enumerations, enums
for short, are used to represent

a finite set of values (constants) that
a variable can attain. In other words,
it defines the domain of a type. For
instance, different states of a fan switch
– off, low, medium, and high – make up
an enumeration.
 Since the first release of Java, pro-
grammers have been complaining about
the lack of core language support for
enumerated types. After all, Java impro-
vised on the shortcomings of C++ and
touted type safety, so it was only natural
for the developer community to expect
support for a true enum-type. During
what seemed like an eternally long wait,
many ad-hoc enum representations
evolved and most of them shared a com-
mon premise – modeling enumerations
based on a primitive type, usually an int;
see Listing 1 for an example.
 Although practical, such implemen-
tations have long been frowned upon
by Java purists as a hack that can best
be described as brittle. What exactly is
wrong with such an implementation? In
essence, the main disadvantage of fak-
ing enumerated types using primitives
is the lack of strong typing and hence
the inability to catch errors at compile
time. Other shortcomings are less read-
able code, deviations from object-ori-
ented concepts such as encapsulation,
the absence of a namespace requiring
an explicit prefix for all references, and
the dangers of exposing the internal
implementation to client code.
 Let’s look at some of these drawbacks
in more detail.
 Loose type checking is the result of
a compiler treating the faked enu-
meration just like any other primitive
variable. Since the compiler doesn’t
know anything about the cohesiveness
of the enumeration of constant values,
it doesn’t catch, for instance, a definitive
assignment of an out of range value. In
other words, lack of an explicit type to-
tally gives away the benefits of compile-
time error detection.
 Such ad hoc approaches violate some

of the basic object-oriented principles.
In the previous example, the states of
the switch lack encapsulation. Attri-
butes representing the constants and
operations are not grouped together
but are scattered within the enclos-
ing scope. Since the client code is well
aware of implementation details, even
a small change such as renumbering
them might result in broken client code.
Also note the lack of explicit scoping.
Since enum attributes are listed along
with other class attributes, the enclosing
scope is often that of the declaring class
or interface. This makes their grouping
vague, unreadable, and sometimes error
prone.
 In his book Effective Java, Joshua
Bloch presents a pattern for type-safe
enums that offers both compile-time
safety and better encapsulation. java.
awt.Color uses a similar strategy to
hide the int-enum implementation
under the sheet. However, after reading
through pages full of Java code, you
begin to wonder if the juice is worth the
squeeze. It only reinforces the need for
core language support for enum types.
For a language that touts type safety,
the idea of faking enums with such
elaborate pyrotechnics seems rather
odd.

Enter the New Enum
 The wait is finally over and true
enums are here. Enums are a type of
their own in J2SE 5.0. Among many
other developer-friendly features
recommended in JSR 176, Tiger (the
code name for the new release) packs
the powerful punch of type-safe enums.
Listing 2 shows how we rewrite Fan.
java using true enums. (Listings 2–9
can be downloaded from www.sys-con.
com/java/sourcec.cfm.)
 Note the new enum keyword intro-
duced to support the new type and also
how enumerated constants are listed
– they are neither strings nor ints but
belong to their own declared type, i.e.,
SwitchState. Because it’s a true type, all
the benefits of strong typing automati-
cally kick in. For instance, the following
code attempting to set an invalid state

new Fan().setState(6);

is automatically detected at compile
time and reported an error, eliminating
the need for several lines of validation
code:

setState(Fan.SwitchState) in Fan cannot be

applied to (int)

 Let’s look at other useful features
provided by the enum type.

Support for Namespace
 In the previous example, all the listed
constants, e.g., states of the fan switch,
implicitly belong to the enclosing type,
appropriately named SwitchState,
requiring an explicit namespace quali-
fication to all references to states. For
example:

 SwitchState.Low

 Namespace adornment also helps
avoid collisions. If we were to declare
another enum type for class Fan using a
similar set of constants, say:

 public enum DurabilityRating { Low, Medium,

High }

it will result in no name collision.
SwitchState.Low can be distinguished
from DurabilityRating.Low because of
their enclosing scope.
 Since enum SwitchState is declared
as public, and with the type system
providing a namespace for each enum
constant, it can be accessed outside the
scope of class Fan just like any normal
attribute reference, e.g., Fan.Switch-
State.Medium.

Auto Conversion to String Values
 The new enum type easily facili-
tates descriptive printing using an
internal implementation of the to-
String() method. The default imple-
mentation returns a string representa-
tion of the constant as declared, and,
if you don’t like it, it can be changed
by overriding toString(). It’s that
simple.

J2SE 5.0

by Ajith Kallambella

Exploring Enums

T

Ajith Kallambella is a Sun

Certified Enterprise Architect

and holds several other

certifications from Sun and

IBM. With over 10 years of

industry experience, he has

been developing software

for the distributed enterprise

using J2EE since its very first

release. Ajith is co-author of

Java 2 Certification Passport
and a moderator (sheriff) of

Java-related discussion forums

at JavaRanch.com. He works as

a senior computer scientist for

Computer Sciences Corporation

where he architects scalable

client/server solutions.

ajith@javaranch.com

The wait is finally over

47November 2004www.SYS-CON.com/JDJ

Works with Programming Constructs
 Since enums are their own types, some of the standard Java constructs,
notably the switch and for statements, have been enhanced to work with
enum types. Listing 3 provides an example of the switch construct.
 Switch statements are useful for simulating the addition of a method
to an enum type from outside the type. This can be very useful if for some
reason the enum definition cannot be modified, but needs to be extended.
 There is something rather interesting about this switch statement
– note how the enum constants in case statements appear bare, e.g., un-
qualified with their namespace. J2SE 5.0 makes life easier by attempting
to resolve identifiers in the immediate context. This is somewhat similar
to the new static imports feature. In this example, however, you are
required to omit the namespace. Try including it and you’ll get an error
message:

Fan.java:16: an enum switch case label must be the unqualified name of an enu-

meration constant

 case SwitchState.Off : return SwitchState.Low ;

 Listing 4 provides an example that uses a for-loop construct to iterate
through enums.
 The values() method returns an array that contains enum constants
for this enum in the order in which they are declared. By the way, the for-
loop shown here is called “enhanced for-loop”, another neat feature in the
new release. They are also called as “for-in loop” since you read them as
“for-state-in-Switchstate.values”. This new construct simplifies iterating
over a collection of values – both arrays and Java collections – by taking
away the need to inspect the size, use a temporary index variable, and
cast each element to the appropriate type.

Looking Under the Hood
 In the spirit of empiricism, let’s look under the hood and see how
enums are implemented. Compiling Fan.java (for the complete source
code see the resources section) generates two .classes: Fan.class and
Fan$SwitchState.class. The latter contains our enum definition.

D:\MyJava\JDJ\src>javap Fan$SwitchState

Compiled from "Fan.java"

public final class Fan$SwitchState extends java.lang.Enum{

 public static final Fan$SwitchState Off;

 public static final Fan$SwitchState Low;

 public static final Fan$SwitchState Medium;

 public static final Fan$SwitchState High;

 public static final Fan$SwitchState[] values();

 public static Fan$SwitchState valueOf(java.lang.String);

 static {};

}

 As you can see, the process of compilation results in the automatic
generation of a new class that extends java.lang.Enum. In other words,
the enum keyword acts as a shorthand representation for the autogen-
erated class. This is what the authors of JSR 201 meant by “linguistic
support for type-safe enumeration pattern.” It’s worth mentioning that
every new language extension introduced in Java 5.0 is implemented by
modifying the source-to-byte code compiler so the JVM implementation
remains unchanged.
 If you notice the naming convention adopted for generated enum
types, you’ll recognize that they closely resemble the inner class syntax,
e.g., <enclosingType>$<thisType> format. All enum classes are final sub-
classes of java.lang.Enum, serializable, and comparable. They come with
predefined toString, hashCode, and equals methods. All methods except
toString are final.

 Note that all enlisted enum constants are represented as final self-type
variables of the class. This is done to ensure no instances exist other than
those in the generated class. In other words, enums are Singletons and,
for the same reason, they can’t be instantiated using new or cloned. The
clone method in java.lang.Enum throws a CloneNotSupportedException.
 Since enums are compiled into their own class files, their definition
can be changed, e.g., enum constants can be added, deleted, and reor-
dered without having to recompile the clients. If you removed an enum
constant that a client is using, you’ll fail fast with an error message.
 Now let’s look at some advanced features.

Flavors of Declaration
 Enums can be declared in various flavors. The enum FanState above is
an example of an inline declaration. These are useful for defining enums
that have a limited scope – the use and throw type of enums. Since Java
5.0 introduces the keyword enum at the same level as class and interface
keywords, enums can be declared just as you would a new class or an
interface – in its own .java file (see Listing 5).
 Normal rules of access visibility that apply to standalone Java classes
also apply to enums, whether they are declared inline or in a separate file.
For example, if you omitted the public keyword, the enum type will have
the default package visibility and hence be accessible only within the
package. Similarly if the SwitchState enum were to have a private access
specifier, it wouldn’t be accessible outside the class scope of Fan. You get
the point.
 As with other new features introduced in Java 5.0 such as generics,
enums have been used in several JDK packages. JDK 5.0 includes several
enum types to support core classes. For instance, the newly introduced
java.lang.Thread class uses an enum named State to represent the cur-
rent state of the thread. Some of the best enum candidates haven’t been
converted over yet – like the most quoted Color class. You can use Javadoc

www.SYS-CON.com/JDJ48 November 2004

as your field guide for spotting enums
in Tigerland. The new API Javadoc
conveniently lists all enums in the pack-
age-summary.html along with other top-
level types. Once you have spotted them,
go ahead and open the source code
and see how the preachers practice. It’s
always fun.

Class-like Behavior
 Since enums are class-like critters,
they support most, if not all (see the
Caveat Emptor sidebar), semantics sup-
ported by normal Java classes. The enum
type definition can have one or more
parameterized constructors, imple-
ment interfaces, and support class body
elements such as attributes, methods,
instance and static initializer blocks, and
even inner classes.
 In addition, arbitrary fields and meth-
ods can be added to individual enum
constants. Such constant-specific class
bodies define anonymous classes inside
enum classes that extend the enclosing
enum class. Listings 6–9 illustrate the
use of some of these features.
 There’s a lot to digest here, so let’s
tackle them one at a time.
 We are defining three types of ac-
counts as enums – checking, savings,
and investment. First things first – we
need some clarification of terminology
here. Every enum constant has a declar-
ing class, which is also called its type. The
term “enum type” is used to refer to the
declaring class, e.g., AccountType. When
we use the term “enum constant”, it’s re-
ferring to all enlisted contents contained
in the scope of AccountType, e.g., Check-
ing, Savings, and Investment. It shouldn’t
be very confusing. Just think of any class
declaration and its objects – the enum
type is analogous to the class declaration
and enum constants, the objects.

Enums Are Classes
 Similarities between a normal class
declaration and an enum declaration are
hard to miss. The enum type Account-
Type implements the IAccountType
interface and has two constructors.
What does it mean? To implement an in-
terface, the enum type must implement
every method defined in the interface.
Since all enum constants are objects
of the declared type, they share the
common implementation of methods
getAvgBalanceMethod and getInterest-
Rate. An enum constant declaration,

when followed by arguments, invokes
the constructor defined by the enum
type. In our example, the enum constant
Savings invokes the constructor

AccountType(double interestRate)

with argument 3.5.
 All the standard rules of constructor
overloading and selection specified
by the Java Language Specification
are followed here. Since enum constant
Checking has no arguments following its
declaration, it’s necessary to provide a
no-arg default constructor. If the enum
class has no constructor declarations,
a parameterless default constructor is
automatically provided to match the
implicit empty argument list.
 Notice how an enum type can
declare methods and attributes, again,
just like a normal Java class. For mem-
ber type declaration, all rules of scop-
ing, access specifiers, and visibility are
valid and therefore must be followed
with regard to instance variables and
methods. There is something rather
interesting with the type AvgBalance-

Method. It’s an enum within an enum.
Since an enum type can support all
types of class members, they can
support enums too. Since AvgBalance-
Method is declared as public, it’s visible
outside the scope of the enclosing Ac-
countType. Notice how it’s accessed in
the Account class.

Constant Class Bodies
 Enum constants can be associated
with an arbitrary class body often re-
ferred to as a constant class body. Such
classes are very similar to anonymous
class declarations (even named similar-
ly) and are implicitly static. This means
they can access only static defined in
the enclosing scope. Since constant
classes are implicit extensions of the
enclosing class, they can override meth-
ods defined in the enum type. In our
example, enum constant Investment
overrides getAvgBalanceMethod defined
by AccountType. In fact, it would be per-
fectly legal to declare AccountType as
abstract and force every enlisted enum
constant to implement methods in the
interface in their constant class body. A

J2SE 5.0

 Let the buyer beware: a simple axiom often used in commerce summarizes it well – it means the buyer

alone is responsible for assessing the quality of a purchase before buying. Enums are so powerful, once you

learn the ropes it’s easy to be tempted to stretch and do “cool” things. Before you know it, bad things start

happening.

 Always check out the API spec and know the expected behavior before you put something to use. As a smart

programmer, you also need to know the limitations of the enums so that it can save your bacon some day.

1. You can’t new enums: Remember they are singletons. For the JVM to handle them properly, only one

instance of each should exist. They are automatically created for you. Luckily the compiler catches explicit

instantiation. For the same reason, enum constructors are implicitly private. Think about it.

2. You can’t extend enums: One enum cannot extend another one. You can’t extend the primordial java.

lang.Enum either. That’s how it works and if you are worried about this limitation, your design demands a

second look. You shouldn’t need a hierarchy of enums.

3. You can’t declare enums locally: Enum types cannot exist in any scope lower than a class scope. You can’t

define them within a method.

4. Order matters: Within the enum type class body, the constants must appear before other class elements

such as attributes, methods, and constructors. This is true at least as of the 5.0 beta release.

5. No nulls please: An enum constant cannot be null. It’s that simple.

6. Don’t use ordinal: Code that uses an ordinal() method, e.g., logic based on the position of an enum con-

stant as it appears in the declaration, must be discouraged. Your code will break at runtime if constants

are subsequently reordered. What’s more, this is a runtime error. The compiler will not catch such a thing.

7. Everything that sounds the same, isn’t: There are a few other classes in JDK 5.0 that sound very similar

– Enumeration, EnumControl, to name a few. Don’t assume they are enum implementations. Check the

Javadoc.

8. Spare the serialization: Enum serialization isn’t like the normal one you have seen. The process by which

enum constants are serialized cannot be customized. Any class-specific writeObject and writeReplace

methods defined by enum types are ignored during serialization. Similarly, any serialPersistentFields or

serialVersionUID field declarations are also ignored – all enum types have a fixed serialVersionUID of 0L.

Again, this shouldn’t concern you too much. Let the language take care of the specifics.

Caveat Emptor

49November 2004www.SYS-CON.com/JDJ

word of caution: although support for constant class bodies is a very
powerful feature, it may be wise to avoid stretching them because
of the same reasons why excessive use of anonymous classes is
discouraged – they are less readable and hard to debug.
 It’s important to mention here that only a nonfinal instance
method in java.lang.Enum is the toString() method. You can over-
ride and implement the per-constant toString() method to return a
descriptive name for each enum constant. The default implementa-
tion of toString() returns just the string equivalent of the constant.
Therefore, as illustrated in the example, it may be a good idea to
override when a more descriptive literal is necessary.

 Before we proclaim victory, two new classes introduced for
enum support deserve consideration: java.util.EnumMap and
java.util.EnumSet. As their names suggest, they are enum-enabled
counterparts of the standard Java collection implementation. They
both require that each element maintained by the collection belong
to one enum type. In short, they won’t let you mix and match enum
constants from different types. It’s rather interesting that they both
retain the elements, e.g., the enum constants, in their declared
order, totally ignoring any custom implementation of the compa-
reTo() method. Be sure to check out their API documentation.

Conclusion
 The new enums are a robust way to implement constant
named lists and make them a compelling alternative to ad
hoc enum implementations. With class-like behavior and the
ability to support arbitrary class members, they are certainly
bigger than they appear. Although you may not have an immedi-
ate need to use them in your projects, or at least not every feature
they offer, keep them in your toolbox and you’ll soon find them
handy.

Resources
• Java 5.0 Release candidate home page: http://java.sun.com/j2se/

1.5.0 index.jsp
• JSR 201 – check out the enum draft spec: http://jcp.org/en/jsr/

detail? id=201
• JSR 176 – J2SE 5.0 Release contents: http://jcp.org/en/jsr/detail?

id=176

Listing 1: Enumerated types – the old style
package simple;

public class FanOldStyle {

 public static final int SwitchState_off = 0 ;
 public static final int SwitchState_low = 1 ;
 public static final int SwitchState_medium = 2 ;
 public static final int SwitchState_high = 3 ;

 private int currentState = SwitchState_off;

 public void setState(int state){
 // Out of range argument can result in illegal state.
 currentState = state ;
 }

}

Technology is hot again. Is your
career? NOW is the time to explore
new opportunities.

Visit Dice.com to find a better job
with better pay. Check your salary.
Compare your skills. Search over
50,000 tech jobs from leading
companies and choose to have
new jobs emailed to you daily.

IT’S TIME for something better.
Visit Dice.com today.

F I N D S O M E T H I N G B E T T E R .

©2004 Dice Inc.

www.SYS-CON.com/JDJ50 November 2004

y first programming job was
done using Report Generator
Language (RPG) on the IBM
System 36. The hardware was

green screen, the tape decks reel-to-reel,
and the printers large and noisy. The lan-
guage itself was very data-centric with
each program declaring formatted Input
or Output data structures that were read
or written to. Each structure mapped to
a file, a screen buffer, or a printer spool.
In spite of all this we did get the job
done, although our biggest problem was
the business changing requirements on
us that necessitated altering the data
structures. Because they were burned
into the program’s source specification,
changing a file required altering every
program that used it and a conversion
job to update the live user data to use
the new format. The inertia of this task
made it important to do thorough up-
front analysis to get the data relation-
ships and attributes as correct as the
available knowledge allowed.
 Preemptive flexibility sometimes
included soft-coding all of the data
structures to be called anonymous
names such as “user field 1” or “user
field 2.” Separate definition files for each
application mapped which fields were
used in which context and the intention
was that when the business required
some new data attribute to be added,
an unused extra structure was simply
activated by hacking around with the
definition files to make the new attribute
available on screens and reports.
 The thing that grabbed me about ob-
ject-oriented programming when I was
first introduced to it (through the Small-
talk language and then Java) was that
all of this would be fixed. The program
was no longer concerned with its data;
instead this was all encapsulated inside
objects that provided a behavioral API,
making the system more malleable and
extensible. Inheritance and polymor-
phism and other facets are nice features
of the language, but data encapsulation
was the key thing that sold me.
 The first couple of systems I worked

on were business apps that had to deal
with back-end relational corporate data,
and the problem that arose is the well-
trodden one of how to persist objects
in a relational database. Objects have
things like inheritance, many-to-many
relationships, many ended links with no
back pointer, untyped data structures
(in the case of Smalltalk), and other fac-
ets that just don’t fit into a row/column
fashion. Initially as I wrestled with this
impedance mismatch by writing or us-
ing fancy frameworks, I always believed
that this was a temporary point-in-
time exercise required because of the
existence of legacy relational databases;
OO databases were just around the
corner so their arrival would cure all our
maladies.
 Frederick Brooks has a chapter “No
Silver Bullet” in his superb treatise The
Mythical Man Month, and unfortunately
my belief in OO databases fell naively
foul of his prediction. I had the good
fortune to work with a very powerful OO
database while programming for a bank.
It did effectively persist the objects,
however, it failed to meet the business’
needs precisely because it was struc-
tured around objects and not rows and
columns. Users needed fast and varied
access to their data, and just about every
existing application from spreadsheets
to off-the-shelf GUI builder tools was on
their desktops itching to access the cor-
porate data. These all required the data
to be relational, and although an ODBC-
to-OO bridge existed, apart from being
some kind of intellectual nasty bolt on, it
meant that the user’s thinking of the data
was by definition a relational one. After
a while some converts began suggesting
it was pointless to be doing OO at all,
and one strong argument came from the
fact that the data itself was inherently
row/column based because that was
how it was received by the system and
its users. Input came from external data
feeds (where the data was structured)
or from manual input where tables and
lists were rows of data, and fields of data
populated the columns.

 Object-oriented databases do work
and are widely used in apps that don’t
need to publish their data as a corporate
database (such as embedded devices);
however, for the corporate world it
perhaps looks as though OO data-
bases haven’t achieved the critical mass
required to become widely accepted.
On one major database vendor’s Web
site, the listing of their product portfolio
promoted their relational mapping soft-
ware in preference to their (very good)
OO database as the initial deployment
configuration for J2EE.
 One way in which object-oriented
data stores might enjoy a renais-
sance is with XML. By its nature XML
is structured around a tree of nodes
that can repeat and contain further
nodes, data elements are optional, and,
although XML enjoys being used as a
readable structured message format, it’s
also used as a way of representing and
persisting data. XML doesn’t store itself
in rows and columns easily; however,
if it’s persisted in raw text for queries a
search engine needs to be able to peek
at its contents. This is essentially what
Web search engines do – initially they
just queried into HTML (which is no
more than XML marked up specifically
for browser syntax), although now they
recognize specific content formats (.doc,
.pdf) and promise to even embrace the
desktop’s contents itself as their data
source (http://news.com.com/Google+t
o+unveil+desktop+search/2100-1024_3-
5408765.html?tag=nefd.lede).
 If the future of search engines is to
query data irrespective of source, and
the flexible and user friendly nature of
searches exceeds anything that SQL
could do for a nontechnical corporate
user, is it possible that object-ori-
ented databases will be reborn with the
required search engine interfaces? Or
is the problem simply that data sticks
where it lands, and most companies are
loathe to physically move data from its
initial resting place lest the downtime
and potential errors create more prob-
lems than are solved?

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Square Data and
Round Holes

M

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

www.SYS-CON.com/JDJ52 November 2004

 Part 1 of this article (“Java Gaming: Understanding the Basic

Concepts,” [JDJ, Vol. 9, issue 10]) covered the basics of a game

framework. Part 2 goes into more depth on the actual 2D rendering

specifics and the resulting demo: the Ping program (see Figure 1).

2D Rendering
 Game rendering is a subject that has great depth and com-
plexity. This article focuses on the topics that we believe are the
most important to 2D games and Java games programmers:
• Fullscreen and DisplayMode management
• Buffering
• Images
• Video memory constraints
• Performance tip: intermediate images

Fullscreen and DisplayMode Management
 A game developer must decide whether to run a game in
fullscreen mode (where it occupies the entire monitor display)
or windowed mode (where it is one of many windows on the
user’s desktop). Both modes are appropriate for different types of
games. For example, a game that is supposed to be all-consum-
ing while being played would work best in fullscreen mode, al-
lowing it to take over the machine and let the user be completely
mesmerized by the experience. Alternatively, a game that is fun
to dive into and out of briefly, such as a card game, may best be
one of many tasks on a user’s monitor (allowing them to pretend
to actually get real work done at the same time).
 Another approach is to be flexible and allow the game to run
in fullscreen mode or in windowed mode. This property could be
user configurable and the game written to work well either way.

Fullscreen Mode
 To put your game into fullscreen mode first create a Frame,
make it undecorated (this removes the window decorations such
as the title bar and close/resize icons), and then tell the appropri-
ate GraphicsDevice to switch into fullscreen mode on that Frame:

Frame gf;

void initFullScreen(GraphicsDevice gd) {

 // initialize the main app frame

 gf = new Frame("Game Frame");

 gf.setUndecorated(true);

 // disable repaint mechanism

 gf.setIgnoreRepaint(true);

 // the next call shows the window

 gd.setFullScreenWindow(gf);

 }

 The call to setIgnoreRepaint() is used because the game loop
described in the first part of the article handles all rendering
explicitly, meaning we don’t need the usual toolkit mechanism
of repainting the window.

DisplayMode
 If your game chooses to run in fullscreen mode, you also
have the ability to switch the DisplayMode or resolution of the
monitor. This is platform dependent and currently exists only
on Windows, although we hope to have this capability avail-
able for other platforms in the future. The following code is an
example of how to set the DisplayMode.

if (gd.isDisplayChangeSupported()) {

 DisplayMode myDM = new DisplayMode(640, 480, 32, 60);

 try {

 gd.setDisplayMode(myDM);

 } catch (IllegalArgumentException iae) {

 DisplayMode dms[] = gd.getDisplayModes();

 for (DisplayMode dm : dms) {

 if (dm.getWidth() == 640 &&

 dm.getHeight() == 480)

 {

 gd.setDisplayMode(dm);

 return;

 }

 }

 }

}

 This code could be used in the initFullScreen() method to
set the current resolution to 640 pixels wide by 480 pixels high
with 32 bits per pixel color depth and 60 frames per second
refresh rate. Appropriate error checking is used, beginning
with a check that the system can handle switching display
modes (some platforms don’t currently allow this; others allow
it only when running in fullscreen mode). Then, if the program

by Chet Haase
and Dmitri Trembovetski

2D rendering PART 2

Feature

Dmitri Trembovetski is an

engineer in the Java 2D team

at Sun Microsystems, Inc.,

where he focuses on graphics

rendering and performance

issues for the Solaris and Linux

platforms. Read his frequent

posts on the forums at

http://javagaming.org.

dmitri.trembovetski@sun.com

Chet Haase is an engineer in

the Java 2D team at Sun

Microsystems, Inc., where he

focuses on graphics rendering

and performance issues for the

Microsoft Windows platform.

Catch his blogs and articles at

http://javadesktop.org.

chet.haase@sun.com

53November 2004www.SYS-CON.com/JDJ

cannot set the exact display mode that it would prefer, it iterates over the
possibilities, looking for a match that is close enough.

Buffering
 Games, or any applications that want fast and smooth animation,
should use buffering instead of drawing directly to the screen. Drawing to
the screen works fine in cases such as simple and static GUIs; however, for
constantly changing graphics, rendering each item to the screen causes
flashing artifacts that are disturbing to the user. It’s far better to render all
objects to a back buffer and then copy the buffer to the screen all at once.
This technique is called double buffering and makes for much smoother
animations and more enveloping game experiences.
 There are several approaches game developers can take in creating a
double-buffered application.

Use Swing
 Swing already has a back buffer built in. When the program renders to
the Graphics object passed to an overridden paintComponent() method
in a Swing component subclass, it’s usually rendering to the Swing back
buffer. This buffer is eventually copied to the screen. You as a developer
do not have to worry about the details of this buffer; your program ren-
ders things into the right places and Swing takes care of the rest.
 This approach works well for many simple games, but for games that
want full control over all of the rendering aspects (such as those that use
their own rendering loop), leaving the buffering under the control of
other code such as Swing may not be sufficient. These games may want to
control exactly when that buffer is rendered to and copied to the screen.
For example, to achieve a consistent frame rate it’s necessary to control
exactly when rendering and buffering occur. For these applications
Swing’s double buffering is not the answer.

Manual Buffer Image Creation and Management
 The traditional way to do double buffering manually is to create an
offscreen image, render to that image in the main game loop, and then call
Graphics.drawImage() from that image to the screen Graphics when the
frame rendering is complete.
 In JDK 1.4, the new twist to this approach was the introduction of
VolatileImage, which made it possible to create the offscreen image in
hardware-accelerated memory on the graphics device.

BufferStrategy
 Also in JDK 1.4, the new API of BufferStrategy was introduced. This API
boils down the actual work in managing buffers into the basics that a de-
veloper needs, allowing the program to create a back buffer (which can be
either a Flip or Blt buffer, discussed below), get the Graphics for that buf-
fer, render to the Graphics, and then tell the buffer to show() itself. These
buffers may get hardware accelerated (by using VolatileImage under the
hood) without the hassles inherent in managing VolatileImages. Moreover,
the ability for BufferStrategy to use the most appropriate back buffer (Flip
or Blt) means that you always use the same API and let the BufferStrategy
implementation take care of the details.
 Creating and using a BufferStrategy is shown below. Assuming the same
gf Frame variable used in initFullScreen() above, the program can initialize
the BufferStrategy as follows:

gf.createBufferStrategy(2);

// 2 means one back buffer and one screen (2 total)

BufferStrategy strategy = gf.getBufferStrategy();

and use it later in the rendering process:

Graphics g = strategy.getDrawGraphics();

// render to the Graphics object appropriately

// ...

// now show the back buffer on the screen

strategy.show();

Flipping and Blitting Buffers
 When an application is running in fullscreen mode on some platforms,
createBufferStrategy may create a FlipBufferStrategy. Otherwise, a BltBuf-
ferStrategy will be used. FlipBufferStrategy will get the buffer contents
onto the screen by a simple pointer switch (swapping the pointers for
the back buffer and the screen memory). The BltBufferStrategy will always
copy the contents onto the screen (by calling Graphics.drawImage()
internally).
 Buffer flipping is an inherently faster operation than buffer copying since
it requires only a pointer swap. However, flipping will usually wait for the
next vertical refresh event to occur. This means that you may actually get a
slower frame rate overall even though the actual flip operation can happen
very quickly. This slowdown is because you are now pegged at a maximum
of the refresh rate of the video card (60 times per second, or whatever it is
set at).
 Another implication of buffer flipping is that your application will have
smoother animations in general because the buffers are swapped instantly
at a time when there are no other changes on the screen (because the flip
happens between vertical refreshes). Imagine if the screen was in mid-re-
paint and was halfway through drawing an object that is currently moving
in your game. If you flip buffers, the refresh will finish before the buffers
swap, thus that whole frame remains consistent to itself. If you copy from
the back buffer to the screen while the refresh is happening (as would be
the case with BltBufferStrategy), you might get a “tearing” artifact where
that moving object is seen with its top half in the previous location and its
bottom half in the new location during the same screen refresh. This tear-
ing artifact is seen in Figures 2–4.

www.SYS-CON.com/JDJ54 November 2004

Feature

 In general, we advise using BufferStrategy for game program-
ming; it gives game developers the hands-on control they desire
while taking care of many of the tedious details of buffer man-
agement for you.

Images
 There are mainly two types of images used heavily in games.

Sprites
 Sprites are images that are rendered to seldom or never (per-
haps they are loaded or created/rendered once at startup and
never touched again), but are copied from quite often, perhaps
once or more per frame. Examples include icons in a GUI or player
character images.

Backbuffer
 This is an image that is rendered to often (say, several times
per frame) and copied from once per frame.
 In Java, the best images to use in these cases are:
• Managed images for sprites: These are images whose main

copy is stored in the Java heap (such as a BufferedImage), but
for which we might create a cached accelerated copy in video
memory. Although operations to the image are not hardware-
accelerated (because we don’t enable hardware acceleration
for rendering to Java heap-based images), it is the copies
from the images that you really care about (since these are

 the operations that occur
 over and over) and we will,
 if possible, accelerate those
 operations.
• VolatileImage or

 BufferStrategy for Backbuffer:
 Only by using these APIs can
 you create a back buffer that
 is capable of accelerating
 rendering both to and from
 the image.

ImageIO
 Note also that ImageIO is a good package to keep in mind for
general image loading and saving. This package was new in 1.4
and was created to be a more general purpose and robust image
reading/writing facility than the old image-loading APIs of previous
releases. The following are some of the reasons to consider using
ImageIO for your future applications.

Synchronous
 The old image APIs assumed that you wanted to load your
images asynchronously and then deal with them when they were
loaded. This is still a valid way to go for many uses, but not all, and
people end up forcing synchronization by either using the Media-
Tracker API or by using ImageIcon (which is merely a Swing wrap-
per around the Toolkit image facility coupled with MediaTracker).

More Image Formats
 There are currently more image formats supported in
ImageIO, and any future work we do for further image formats is
expected to happen only for the ImageIO APIs. The currently sup-
ported formats in ImageIO readers include JPEG, BMP, GIF (read
only), WBMP, and PNG.

Pluggable Reader/Writer API
 If you have some other custom image format that you need to
use, you can write a plugin for ImageIO instead of writing the entire
image loading/saving framework from scratch.

More Hands-on Capability
 The old image APIs did not encourage image manipulation; you
could load an image, but you couldn’t really get at the bits (either
the pixel data or the metadata) very easily. ImageIO supports both
easier pixel access (it creates BufferedImage objects) as well as
metadata access. More control equals more power, and more power
is a wonderful thing.

All Images Are Modifiable
 The old image APIs created images that were read-only. The
ImageIO images (BufferedImage objects) are all writeable.
 Note too that ImageIO images (in addition to all other image
types) are “managed” in JDK 5.0; we’ll automatically accelerate
copies from these images as described above under the “Managed
Images for Sprites” discussion.
 Loading an image using ImageIO can be done with the following
snippet:

BufferedImage bi = ImageIO.read(new File("Duke.png"));

Video Memory Management
 Accelerated video memory (VRAM) can be a very constrained
resource on some machines, especially ones with low-end graphics
cards, such as most laptops. When a program creates images to live
in video memory, it’s using up that scarce resource in a way that
may force other, more important, images to live in system memory
instead.
 As with any scarce resource, it’s important to manage VRAM
carefully, especially with a performance-oriented application that
benefits from having exactly the right images accelerated at exactly
the right times.
 Currently, VRAM must be tracked manually using simple meth-

 Figure 2 Frame 1, with the actual position of Duke on the screen

 Figure 3 Frame 2, with Duke in the new position

 Figure 4 Tearing artifact seen when copying Frame 2 onto the screen while the vertical

refresh (whose position is indicated by the dashed line) is in the same area being

updated

 Figure 1 Ping demo program: application
and source code at http://ping.
dev.java.net

55November 2004www.SYS-CON.com/JDJ

ods to inquire about the availability of VRAM:

GraphicsDevice.getAvailableAcceleratedMemory();

and force images to dispose of any associated VRAM resources:

Image.flush();

 In addition, you can use the ImageCapabilities API to determine whether
any given image is accelerated:

Image.getCapabilities(GraphicsConfiguration gc);

ImageCapabilities.isAccelerated();

Performance Tip: Intermediate Images
 We will leave you with one general performance tip for 2D rendering: if
you ever need to render anything even mildly complex several times, con-
sider prerendering it as an image first and then simply calling drawImage()
from that image from then on. Consider the following examples.

Transformed Images
 Suppose you have an original image (say, a sprite) that you want to
transform (scale, rotate, whatever) prior to rendering, and then you intend
to render it in this transformed way several times. It’s probably much faster
to create an intermediate image to hold the transformed result and then
simply call drawImage() from that intermediate image than it is to make us
transform the original image every time you render it.

Text
 Currently we render text through software routines (except in our new,
cool OpenGL rendering pipeline, available in JDK 5.0 but disabled by de-
fault). We’ll eventually cache text characters (glyphs) as accelerated images,
but you could do the same in the meantime. In fact, you could do even
better than that: you could cache entire strings as images. Say, for example,
you want to display the string “Score:” at the top of the screen on every
frame. It’s always the same text, in the same font, at the same size, and in the
same color. Why not create an intermediate image, render the text to that
image, and then call drawImage() from that intermediate image from then
on? It’s far faster for us to copy from that image than to go through the work
of rendering the actual characters every time. As if these advantages were
not enough, you can take the same approach with such text variations as
custom fonts, anti-aliased text, and large font sizes, all without any perfor-
mance penalty that you might currently experience by using our default text
rendering; once it’s an image, all we need to do is copy it.

Anything
 It’s easy to see that the above approach of rendering transformed images
or text into intermediate images could be taken with any kind of rendering
whatsoever. A snowflake that consists of a lot of lines? A complex Shape
that takes a long time to render? An icon you copy around often? All you
need to do is create the image, get the Graphics for it, render your object to
the image, and then call drawImage thereafter whenever you would have
otherwise called the actual rendering operations.
 There are (of course) a couple of important details in this approach
that we should mention.

Image Type
 You’ll need to create an image of the appropriate type for your desired
objective. For example, if you are using an intermediate image to render text,
you’ll need a transparent image so that the background of that image does

not get copied along with the text characters. Similarly, if you are using an in-
termediate image for a rotated version of your image, you probably want the
area outside that rotated image to be transparent. If you are using an interme-
diate image to do antialiasing or translucent rendering, you’ll obviously want
a translucent image. Note that copies from translucent images may be much
slower than copies from opaque or transparent images, so you may want to
test the alternatives to determine what will work best for your situation.

Size vs Speed
 The only downside to using intermediate images is that you are trad-
ing potentially faster performance for an increased memory footprint;
every one of those additional intermediate images consumes a chunk of
memory. You need to determine whether that increased memory usage is
worth the trade-off of better performance.

Intermediate Images: For More Information
 This topic is covered in more depth with sample code on Sun’s developer
site; check out the article “Intermediate Images” at http:// java.sun.com/de-
veloper/technicalArticles/Media/intimages.

Demo: Ping
 The source code and related information for this demo can be found at
http://ping.dev.java.net.
 We wrote the Ping application to demonstrate points that we were trying
to make around the game framework described in Part 1 and general 2D
game programming issues and performance tips. It’s not supposed to be a
game that lasts you through months of sleepless nights (or even through a
half hour of twiddling). It should, however, be a fairly complete example of

www.SYS-CON.com/JDJ56 November 2004

a simple game framework and should have enough sample code
and algorithms in it to show how you might use similar approaches
in a game that is more complete and awesome. In short, we expect
you to spend far more time with the Ping code than you will playing
the actual Ping game. We hope that you can use the code and ap-
proaches in it to create something truly great.
 The code should stand pretty much on its own, especially
given that Ping uses the game framework and 2D rendering tips
described in this two-part article. However, as with any applica-
tion that takes more than 50 lines of source code, a little high-level
explanation would probably be helpful. The next section will
introduce the game and describe the architecture at a high level.
It will also call out methods and approaches of particular interest,
especially in the context of this article. However, we don’t intend to
cover everything of interest in the demo here; we would suggest you
dive into the code to see for yourself how it all works.

Game Description
 I can’t imagine anyone who has read this far into the article who
has not seen a game similar to Ping, so a description of the game is
probably redundant. But in the interests of completeness…
 Ping is a simple 2D version of tennis, where the ball bounces
around the playing area. The object of each player (represented by
paddles on the left and right) is to keep the ball in play on his or her
side. As long as you keep hitting the ball back, the game goes on.
When a player misses the ball, the ball hits the back wall behind
that player’s paddle and that player loses a life. When three lives are
lost, the game is over and the other player wins.

Code Overview
 The application starts in Ping.java; this is where the main()
method is that starts everything. This is also where the main game
loop (run()) and main render function (render()) reside; these func-
tions are very similar to what we described in Part 1 of this article.
 Some of the other classes worth calling out here include:
• DynamicGameObjects: This class keeps track of all movable

objects in the game, which includes the ball and the left and
right paddles. In general, this class forwards actions on dynamic
objects to all of the applicable objects. For example, when
DynamicGameObjects.render() is called, that function simply
calls render() on the ball and paddles.

• ForegroundObjects: This class keeps track of all the objects that
will be painted on top of the game, such as the score. See Hud,
below, for more details.

• StaticGameObjects: This class manages the placement and ren-
dering of the game boundaries (the walls).

• Paddle: This class is responsible for rendering each paddle
(the position is dependent on whether the paddle was instanti-
ated as the right or left paddle) as well as tracking events. The
Paddle instances listen for keyboard events and accumulate
the events as described in Part 1 of this article. Then later
Dynamic-GameObjects.gatherInput() is called, which defers
to Paddle.gatherInput() to actually process the accumulated
input events. The input events are processed to determine total
down time as well as acceleration and, finally, paddle position
for this frame.

• Ball: Holds the position and trajectory information for the ball
and is responsible for updating that data through the updatePosi-
tion() method. This class also handles the collision logic for the
ball in processCollisions().

• Collider: Handles the collision detection algorithm. It uses a
simple parametric collision approach, where it detects the time at
which a collision occurs for both the walls and the paddles.

• Background: Simply holds a background image for the game
screen and handles rendering that image to the back buffer for
every frame. Note the use of an intermediate image (bgImage-
Scaled) to cache the scaled version of the image so that we need
only copy the image and not scale it on the fly.

• GameLogic: Handles all of the information and state for making
the game playable instead of just having a ball bouncing around
on the screen.

• Hud: Handles the state and rendering of the “Heads Up Display,”
or the GUI that sits on top of the game. This includes things like the
score and the help pane.

• PingFrame: This class extends JFrame and customizes our window
for the game, including switching into fullscreen mode, setting the
display mode, and handling keyboard events that affect the overall
game.

• SoundFactory: Handles much of the simple audio processing,
such as loading, starting, and stopping sound clips.

• ZoomyBackground: This part of Ping is completely gratuitous,
but we thought it looked cool. It’s based on code that Jim Graham
(another member of the Java 2D team) developed for a previous
JavaOne conference to show some of the simple yet cool effects
you can achieve with Java2D. We use this class as a mindless inter-
mission animation while waiting for the user to start the game.

 That should do it for the explanation of the program; we suggest
you dive in at this point to see how things work.

Summary
 This article outlined a generic game framework that, although light
on details, covers the essentials for what most games would need to do.
It described some of the issues that game developers face, in terms of
both algorithms and complexity as well as Java-specific programming.
 The framework and examples developed in this article are mostly
suitable for simpler 2D games; the complexities and issues in 3D
programming are very specific to those types of games and we did not
get into those rather more involved issues here. Note, however, that
the main framework and rendering issues covered here are also issues
in the 3D space, so anything gleaned here can only help in the larger
world of 3D development.
 Since there is so much that we didn’t cover (and didn’t have any
hope of covering; game development is a hugely complex area of
programming), it’s worthwhile to pursue some of the resources we
have listed below, as well as many other good sources of information
in books and Web sites.

Resources
• The Ping source code and related information: http://ping.dev.java.

net
• Information and forums specific to Java desktop client development:

http://javadesktop.org
• Information and forums specific to Java game development. Projects

include sample games as well as core game development technolo-
gies such as the Java OpenGL bindings: http://javagaming.org

• Information, forums, and projects for all Java developers: http://
java.net

• Information about the overall Java platform, including articles such
as the “Intermediate Images” mentioned above: http://java.sun.com

Feature

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 17

 Apple www.apple.com/xserve 877-41APPLE 4–5

 Borland www.go.borland.com/j1 831-431-1000 11

 Business Objects www.businessobjects.com/dev/p7 888-333-6007 31

 Canoo Engineering AG www.canoo.com/ulc 888-333-6007 33

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 53

 DataDirect www.datadirect.com/jdj 800-876-3101 9

 Dice www.dice.com 877-386-3323 49

 EV1 Servers www.ev1servers.net 800-504-SURF 21

 GlueCode Software www.gluecode.com 310-536-8355 39

 Google www.google.com/cacm 650-623-4000 43

 H&W Computer Systems www.hwcs.com/jdj05.asp 800-338-6692 45

 Information Storage & Security Journal www.issjournal.com 888-303-5282 57

 InstallShield www.installshield.com/jdj 800-809-5659 27

 InterSystems www.intersystems.com/match1 617-621-0600 23

 M7 www.m7.com/d7.do 866-770-9770 35

 Microsoft www.msdn.microsoft.com/visual/think 15

 Mindreef www.mindreef.com +1 603 465-2204 51

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 55

 Oak Grove Systems www.oakgrovesystems.com 818-440-1234 41

 Oracle www.oracle.com/tools 800-633-0759 Cover II

 Parasoft Corporation www.parasoft.com/achievequality 888-305-0041 29

 Qpass www.qpass.com/jdj 206-447-6000 47

 Quest Software, Inc. www.quest.com/jdj 800-663-4723 Cover IV

 SAP www.sdn.sap.com 19

 Software FX www.softwarefx.com 800-392-4278 Cover III

 Stylus Studio www.stylusstudio.com 781-280-4488 6

 Web Services Edge 2005 East www.sys-con.com/edge 201-802-3069 60–61

 WebRenderer www.webrenderer.com +61 3 6226 6274 37

www.SYS-CON.com/JDJ58 November 2004

First Look

ou know how to write good Java
code and deployment to a server
is no mystery either. But have you
ever had to work in large develop-

ment teams, maybe geographically dis-
persed (off-shoring…)? Ever had to address
the pain of application software updates?
 So often, when evaluating Java develop-
ment tools, the focus is on productivity in
writing code. While this is clearly impor-
tant, it is essential not to underestimate
the importance of managing the entire life
cycle of an application – from setting up
the development environment, to manag-
ing software delivery and maintaining the
applications over the life cycle. The larger
the project, the more critical this is, both
from an efficiency and a financial point of
view.
 Over the past 30 years SAP has gath-
ered in-depth experience in developing
applications with large, geographically
dispersed development teams. The deliv-
ery of software to the customer and the
management of software upgrades and
synchronizing these updates with custom-
ized code at the customer site are all issues
that SAP has mastered. Now SAP is bring-
ing the same high-quality approach to the
Java world.

SAP Web Application Server
 SAP Web Application Server is a key
component of SAP’s integration and appli-
cation platform. SAP NetWeaver provides
tool support for productive, model-driven
and service-oriented Java development,
but also, and this is key, an infrastructure
that provides full-scale support for all
phases of the life cycle – the Java Develop-
ment Infrastructure (JDI). This infra-
structure – tightly integrated with the SAP
NetWeaver Developer Studio, delivered
with the application server – reduces
overall development TCO and provides for
reliability and flexibility in the deployment
and change management process.

Synchronized Team Development Made Easy
 The JDI gives you the best of both
worlds – you can still develop in Java in

your local environment, but your team’s
work is also synchronized via a central
development environment.
 Within the JDI, the Design Time Repos-
itory (DTR) handles file versioning to en-
sure that all developers are working from
the same set of code. Developers access
the central service via the SAP NetWeaver
Developer Studio, check out files, produce
new versions in the local file system, and
check them back in after successful local
testing. In the DTR perspective, you can
compare versions, check version or revi-
sion history, and so on. During develop-
ment, you can synchronize repository and
local file systems whenever you wish, or
even interrupt the connection between
the two and reconnect later.
 From the DTR you can manage:
• Different versions of a development

object in the same repository
• Multiple states of a software compo-

nent (development and consolidation
of several releases)

• Multiple users making modifications
to the same development object (with
conflict detection)

 Each state of software component
development is represented in one work-
space. The information about the state of
a workspace can be propagated to other
workspaces so you can synchronize the
work of development teams using various
instances of the DTR.
 The DTR provides features for change
management in a distributed, mul-
tiuser development environment. As
you replace older versions of files with
newer ones, the DTR handles this process
centrally and keeps the version history.
For more complex projects, though, you’ll
need more than that. Suppose modifica-
tions are occurring directly in end-users’
systems, so various versions are being
developed in parallel and multiple DTRs
are in place. The version history is always
deployed along with the files for global
version history of the DTR. As a result,
versions created in parallel are detected
automatically across repository boundar-

ies. Then there are times when, during
code modifications, you may not want
to have an earlier version automatically
overwritten by updates – instead, the DTR
supports the merging of two colliding
versions, allowing you to combine the
advantages of the newer version with your
modifications. What’s more, to reduce the
maintenance effort as much as possible,
you would want to integrate bug fixes
from older releases into newer ones from
the maintenance cycle. The DTR supports
this, since changes are always deployed
as a whole set of versions, instead of
individually. This approach to change
management means that the results are
unaffected by the sequence in which the
changes are applied. With its innovative
approach to distributed development, the
DTR enhances productivity and reduces
costs of development throughout the
whole product life cycle.

Component-Based Development
for Efficient Projects
 The JDI takes a component-based
approach to development. A component
hierarchy distinguishes multiple levels of
granularity:
• Development objects – the finest level

of granularity: Tables, Java classes, and
project files that are stored as versioned
files.

• Development components (DCs): The
units of the development and build
process – they group development
objects into larger development com-
ponents, whereby one DC can contain
multiple DCs.

• Software components: The deployment
and installation units that are made up
of DCs represent larger building blocks
of products.

• Product: The complete solution.

 DCs are at the heart of application de-
velopment and follow a simple principle:
only the parts declared to be public are
visible to other DCs. In other words, to
use one development component from
another DC, you need to explicitly declare

by Wolf Hengevoss
and Christopher Hearn

Taking the Pain out of Large-Scale
Java Development Projects

Y

Chris Hearn is the product

marketing director, SAP

NetWeaver. Educated

at Oxford University,

England, Chris has 20 years

of experience in IT in a

variety of roles.

christopher.hearn@sap.com

Managing development environments

Wolf Hengevoss is a

member of the

SAP NetWeaver product

management team.

wolf.hengevoss@sap.com

59November 2004www.SYS-CON.com/JDJ

this usage. This explicit declaration of
dependencies between DCs and precise
relationships between objects allows the
encapsulation of functionality that leads
to a fine-tuned, highly efficient build
process in the Component Build Service.

Component Build Service
 Speed up the build process and avoid
errors with the Component Build Service.
Ever experience night-builds of com-
plete applications that fail – followed by
another 24-hour wait for the next build?
With the JDI, these days are over.
 Like the DTR, the Component Build
Service (CBS) is a J2EE application that
uses a database. It hosts all Java archives
needed or produced during software de-
velopment. For each software component
state, a buildspace is set up to contain
these archives. You can trigger a central
build in the CBS at any time. Central
builds apply to modified DCs only, along
with any DCs that have dependencies
with the changed archives.
 This DC build approach allows you to
correct errors in smaller chunks, reducing
bug-fix cycle times. A failed build process
will not affect the build process of any
other DC.
 The CBS also provides:
• J2EE cluster support for high

performance
• Automated build scripts for Java

development
• Automatic rebuild of dependent devel-

opment components after changes to
objects

 After a successful build, the CBS auto-
matically makes the sources and archives
available for use by other developers. Be-
cause all archives are centrally stored and
up-to-date in the CBS, it is an ideal source
for retrieving or updating used libraries in
your local file system. Faster build cycles
and a current build environment signifi-
cantly reduce development costs, time,
and errors, especially in large projects.

Managing the
Development Environment
 The development process starts with
the definition of a product in the Software
Landscape Directory. Here you define
which software components are used
in the product and the dependencies
between them.
 This information is imported into the
Change Management Service (CMS)
where you define the environment for the
developers. You create workspaces and
buildspaces by defining a track that’s used

to describe the development environ-
ment for one software component state.
Fill the buildspaces with all the libraries
required for a development configura-
tion. This in turn is imported as an XML
file into the SAP NetWeaver Developer
Studio, defining the access to those ob-
jects the developer needs for his/her task.
 After development, the developer
releases his/her work to the CMS again.
Here the QM triggers the import into the
consolidation system, after central re-
leases approves and assembles a software
component release. For the next release,
it’s not necessary to physically set up a
new system; simply define a new track.
 This gives you complete control of the
product life cycle from product definition
to application patches.

Key Takeaways
 Let’s summarize the advantages of this
approach:
• The development infrastructure is set

up and managed centrally.
• All sources are stored centrally in the

DTR and retrieved for the central build
process, and all archives are stored in
the CBS, ensuring that you use the lat-
est version of sources. You’re assured
a greater degree of safety when using
archives.

• Clearly defining dependencies and
encapsulating functions facilitates
reuse and maintenance of develop-
ment components.

• Distributed versioning and concurren-
cy control allow you to manage large
development projects taking place in
different locations. Due to the DTR’s
versioning capabilities, modifications
are not overwritten during updates, but
can be integrated into the new version.

• You’ll find a centrally managed system
landscape – there’s no need for each
developer to know precisely where to
deploy an archive.

 For more information on the SAP Web
Application Server and the Java Develop-
ment Infrastructure or to download a trial
copy check out www.sdn.sap.com.

 Figure 1 outlines the basic steps involved in synchronizing local and central file systems and then, after

development, using the JDI’s central build and deployment features.

1. Once the development configuration file is imported into the SAP NetWeaver Developer Studio (1a), you

synchronize your local file system with the sources in the Design Time Repository (1b), and with the archives

in the Component Build Service (1c). Then develop your Java application as you normally would on any local

development environment.

2. Edit sources (check out, change, create, or add files).

3. Build archives locally.

4. Test your build results in a local test environment.

 From here, the JDI automatically takes care of synchronization and even deployment into the test environment.

5. After successful testing, update (check in) sources in the DTR.

6. Build archives centrally. First, trigger the build (6a).The sources and archives are loaded automatically into

the CBS (6b), then the build starts according to the provided build scripts (6c). After a successful build,

sources are activated automatically(6d).

7. Deployment to the central test environment is automatic.

8. Release changes for further processing.

Java Development with the JDI in Place

Local File System

Build

3b

3d

3c

Local J2EE
Test System

Test succeeds

Central J2EE
Test System

Test succeeds

7b7a
6b

DTR Server

inact

act

CBS

Build 6c
6d

Ce
nt

ra
l D

ev
. E

nv
iro

nm
en

t
Lo

ca
l D

ev
. E

nv
iro

nm
en

t Local Build

CMS

Release changes

SLD Dev.
Conf.

Name Reservation

SAP NetWeaver
Developer Studio

6a
81b

5
2b

1a

1c
2 3a 4

www.SYS-CON.com/JDJ62 November 2004

efore commercial developers
choose a technology, they pri-
marily ask two questions: How
well does it solve a problem and

how well does it provide a foundation to
sell a solution to a problem. IT manag-
ers (and in-house developers) do their
technology assessment homework a bit
differently: they look first at how well
the technology solves a problem and the
longevity of a solution to a problem. The
common denominator is the desire to
feel “technology safe.” Aspects that con-
tribute to the sense of safety are whether
the technology is evolving, whether its
ecology is expanding, whether there is a
choice in vendors, and whether there is
equal opportunity.
 In our industry – as in many other
places – there is a circle of adoption:
developers create programs, programs
run on platforms, platforms represent
volume, volume attracts developers who
create programs, programs attract end
users, end users create volume, and so
forth. In such circles there are two spots
where key choices are made, must be
made:
• Differences between platforms cause

developers to either duplicate their
software creation or software valida-
tion efforts. This causes a fragmen-
tation of the developer’s economic
opportunity.

• Differences between similar platforms
decrease vendor choice for the end
user, which increases the risks for ven-
dor lock-in causing fragmentation of
the end-user’s economic opportunity.

 Is this an argument for complete com-
monality between platforms? No, that
is both unachievable and undesirable.
There would be no reason to invest in
building today’s and tomorrow’s complex
systems if there were no means by which
vendors can differentiate. The skill of the

game is to steer the froth ahead of the
standard. New techniques will be tried
in the market and enjoy differing levels
of success. Some of these techniques
will flow into the standards process. The
standards process must navigate through
vendors’ temptations to obtain competi-
tive advantage via the contents of a new
specification and end-users’ needs for
a commodity standard. Sometimes this
balance has been captured, perhaps
crudely so, in the expression “collaborate
on specifications, compete on imple-
mentations” – collaboration, with and
within the community. Collaboration
that has as its measure of success that
it moves the community forward. The
community has not succeeded when the
first person can claim compliance, but
when all in the community can compete
and conform.
 This equal opportunity for the whole
community necessitates that end users
have a means to rate the claims the
vendors are making, and that vendors
are capable of knowing what effort sits
behind a claim of compliance. This
equal opportunity makes it obvious
that the specification must be the
standard of compliance, not any one
particular implementation. This leads
to three fundamental requirements:
the specification is of high quality and
unambiguous, it is well known, and an
implementation’s conformance can be
measured objectively. This is why the
Java Community mandates the creation
of a reference implementation and
compatibility test suite in addition to
just a specification. Not because it’s fun
to do so nor easy, but because these are
necessary tools for implementers to be
free to compete on known terms, for end
users to be free from vendor lock-in, and
for developers to have the confidence
that the Java programs they create are
not lied to by the implementations they

need to run on. That is what positively
feeds the circle of adoption, leading to an
expanding ecology for all of us to enjoy.
 We do compatibility not because
it is easy but because it’s worthwhile.
I admit this comes with some funda-
mentals we must all agree to but it is
worthwhile to do so. The presence of a
reference implementation ensures that
real engineers have actually succeeded
in implementing a specification before
that specification is declared final, is
declared a standard. In addition, many
previous conformance attempts at other
standard-setting organizations proved
that you cannot build a meaningful test
suite without an implementation to test
it against. Both provide a positive feed-
back loop on the quality and correctness
of the specification, since in their de-
velopment both will be interpreting the
specification while the specification is
being developed. A reference implemen-
tation must be well known and readily
available. The test suite will not be able
to test more than what the reference
implementation does and so a vendor
will want to know (and have access to)
the implementation that may have been
built by its competitor that is leading the
specific standardization effort.
 The result is the emergence of
multiple implementations from many
sources based on a specification that
developers using the Java technology
can rely on, knowing that the function-
ality guaranteed by the specification is
indeed present in the platform of their
vendor of choice. Hence, the ability to
feel safe. Together we can make this
result happen and enjoy the opportuni-
ties it provides by participating in the
community and with the community.
 That’s it for this month. I’m very in-
terested in your feedback. Please e-mail
me with your comments, questions, and
suggestions.

JSR Watch

Onno Kluyt

From Within the
Java Community Process Program

B

Onno Kluyt is the

chairperson of the

JCP Program

Management Office,

Sun Microsystems.

onno@jcp.org

Moving the community forward

SPEND LESS TIME PROBLEM SOLVING… AND MORE TIME DEVELOPING APPLICATIONS.

Join The Thousands of Companies Improving Java Application

Performance with Quest Software.

Whether it’s a memory leak or other performance issues,

Quest Software’s award-winning Java products — including

JProbe® and PerformaSure™ — help you spend less time trouble-

shooting and more time on the things that matter. Quest’s Java

tools will identify and diagnose a problem all the way down to

the line of code, so you no longer have to waste time pointing

fingers or guessing where the problem lies. Maximize your

team’s productivity with Quest Software by downloading a free

eval today from http://www.quest.com/jdj.

PerformaSure — a system-wide performance
diagnostic tool for multi-tiered J2EE applications
running in test or production environments.

JProbe — a performance tuning toolkit
for Java developers.

© 2004 Quest Software Inc., Irvine, CA 92618 Tel: 949.754.8000 Fax: 949.754.8999

